aba诱导兰州百合鳞茎气孔主动关闭。

Plant signaling & behavior Pub Date : 2025-12-01 Epub Date: 2024-12-28 DOI:10.1080/15592324.2024.2446865
Lei Gong, Hai-Qing Liu, Ye Hua, Ya-Yun Zhang, Md Mahadi Hasan
{"title":"aba诱导兰州百合鳞茎气孔主动关闭。","authors":"Lei Gong, Hai-Qing Liu, Ye Hua, Ya-Yun Zhang, Md Mahadi Hasan","doi":"10.1080/15592324.2024.2446865","DOIUrl":null,"url":null,"abstract":"<p><p>Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored. Therefore, we aim to investigate the ABA-induced active regulation in the bulb of the Lanzhou lily (<i>Lilium davidii</i> var. unicolor). The morphological characteristics of epidermal strips were analyzed along with a stomatal aperture assay to investigate the bulb's stomatal response to ABA. Moreover, the mechanism of ABA signaling was explored using treatments with ABA signaling chemicals and corresponding scavengers. This study revealed that stomata are mainly distributed on the upper part and outer surface of the bulb. The guard cells of the lily bulb are inflated, and the stomata have a nearly circular shape with relatively low stomatal density. Exogenous ABA was found to induce varying degrees of stomatal closure in a dose-dependent manner, with significant stomatal aperture reduction observed after treatment with 10 µM ABA. Overall, the study indicated that both hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and nitric oxide (NO) are involved in the ABA-induced stomatal closure process, with H<sub>2</sub>O<sub>2</sub> functioning as an upstream component of NO.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2446865"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aba-induced active stomatal closure in bulb scales of Lanzhou lily.\",\"authors\":\"Lei Gong, Hai-Qing Liu, Ye Hua, Ya-Yun Zhang, Md Mahadi Hasan\",\"doi\":\"10.1080/15592324.2024.2446865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored. Therefore, we aim to investigate the ABA-induced active regulation in the bulb of the Lanzhou lily (<i>Lilium davidii</i> var. unicolor). The morphological characteristics of epidermal strips were analyzed along with a stomatal aperture assay to investigate the bulb's stomatal response to ABA. Moreover, the mechanism of ABA signaling was explored using treatments with ABA signaling chemicals and corresponding scavengers. This study revealed that stomata are mainly distributed on the upper part and outer surface of the bulb. The guard cells of the lily bulb are inflated, and the stomata have a nearly circular shape with relatively low stomatal density. Exogenous ABA was found to induce varying degrees of stomatal closure in a dose-dependent manner, with significant stomatal aperture reduction observed after treatment with 10 µM ABA. Overall, the study indicated that both hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and nitric oxide (NO) are involved in the ABA-induced stomatal closure process, with H<sub>2</sub>O<sub>2</sub> functioning as an upstream component of NO.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":\"20 1\",\"pages\":\"2446865\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2024.2446865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2446865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脱落酸(ABA)介导的气孔关闭是干旱胁迫下高效的气孔主动调节模式。以往对气孔调节的研究主要集中在维管植物叶片上,而对球茎植物气孔行为的研究尚不清楚。此外,aba诱导的鳞茎气孔调节还有待探索。因此,我们旨在研究aba对兰州百合球茎的主动调控作用。通过分析鳞茎表皮条的形态特征和气孔孔径测定,探讨了鳞茎对ABA的气孔响应。此外,通过ABA信号化学物质和相应的清除剂处理,探讨了ABA信号传导的机制。研究表明,气孔主要分布在球茎上部和外表面。百合鳞茎保护细胞膨大,气孔呈近圆形,气孔密度较低。外源ABA可诱导不同程度的气孔关闭,且呈剂量依赖性,10µM ABA处理后气孔孔径明显减小。总的来说,研究表明过氧化氢(H2O2)和一氧化氮(NO)都参与了aba诱导的气孔关闭过程,其中H2O2是NO的上游组分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored. Therefore, we aim to investigate the ABA-induced active regulation in the bulb of the Lanzhou lily (Lilium davidii var. unicolor). The morphological characteristics of epidermal strips were analyzed along with a stomatal aperture assay to investigate the bulb's stomatal response to ABA. Moreover, the mechanism of ABA signaling was explored using treatments with ABA signaling chemicals and corresponding scavengers. This study revealed that stomata are mainly distributed on the upper part and outer surface of the bulb. The guard cells of the lily bulb are inflated, and the stomata have a nearly circular shape with relatively low stomatal density. Exogenous ABA was found to induce varying degrees of stomatal closure in a dose-dependent manner, with significant stomatal aperture reduction observed after treatment with 10 µM ABA. Overall, the study indicated that both hydrogen peroxide (H2O2) and nitric oxide (NO) are involved in the ABA-induced stomatal closure process, with H2O2 functioning as an upstream component of NO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The inhibitory activities of two compounds from Securidaca longepedunculata Fresen on the acetylcholinesterase from wheat pest Schizaphis graminum Rondani: in silico analysis. Expression characteristics of CsESA1 in citrus and analysis of its interacting protein. Overexpression of ORP1C gene increases the rice resistance to Xanthomonas oryzae pv. oryzae through negatively regulating transcription activator-like effectors translocation. Aba-induced active stomatal closure in bulb scales of Lanzhou lily. The biochemical and molecular mechanisms of plants: a review on insect herbivory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1