拥挤人群姿态估计的分层结构融合变压器

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2024-12-20 DOI:10.1016/j.inffus.2024.102878
Muyu Li, Yingfeng Wang, Henan Hu, Xudong Zhao
{"title":"拥挤人群姿态估计的分层结构融合变压器","authors":"Muyu Li, Yingfeng Wang, Henan Hu, Xudong Zhao","doi":"10.1016/j.inffus.2024.102878","DOIUrl":null,"url":null,"abstract":"Human pose estimation in crowded scenes presents unique challenges due to frequent occlusions and complex interactions between individuals. To address these issues, we introduce InferTrans, a hierarchical structural fusion Transformer designed to improve crowded human pose estimation. InferTrans integrates semantic features into structural information using a hierarchical joint-limb-semantic fusion module. By reorganizing joints and limbs into a tree structure, the fusion module facilitates effective information exchange across different structural levels, and leverage both global structural information and local contextual details. Furthermore, we explicitly model limb structural patterns separately from joints, treating limbs as vectors with defined lengths and orientations. This allows our model to infer complete human poses from minimal input, significantly enhancing pose refinement tasks. Extensive experiments on multiple datasets demonstrate that InferTrans outperforms existing pose estimation techniques in crowded and occluded scenarios. The proposed InferTrans serves as a robust post-processing technique, and is capable of improving the accuracy and robustness of pose estimation in challenging environments.","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"202 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InferTrans: Hierarchical structural fusion transformer for crowded human pose estimation\",\"authors\":\"Muyu Li, Yingfeng Wang, Henan Hu, Xudong Zhao\",\"doi\":\"10.1016/j.inffus.2024.102878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human pose estimation in crowded scenes presents unique challenges due to frequent occlusions and complex interactions between individuals. To address these issues, we introduce InferTrans, a hierarchical structural fusion Transformer designed to improve crowded human pose estimation. InferTrans integrates semantic features into structural information using a hierarchical joint-limb-semantic fusion module. By reorganizing joints and limbs into a tree structure, the fusion module facilitates effective information exchange across different structural levels, and leverage both global structural information and local contextual details. Furthermore, we explicitly model limb structural patterns separately from joints, treating limbs as vectors with defined lengths and orientations. This allows our model to infer complete human poses from minimal input, significantly enhancing pose refinement tasks. Extensive experiments on multiple datasets demonstrate that InferTrans outperforms existing pose estimation techniques in crowded and occluded scenarios. The proposed InferTrans serves as a robust post-processing technique, and is capable of improving the accuracy and robustness of pose estimation in challenging environments.\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"202 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.inffus.2024.102878\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.inffus.2024.102878","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在拥挤的场景中,由于频繁的遮挡和个体之间复杂的相互作用,人体姿势估计提出了独特的挑战。为了解决这些问题,我们引入了一个分层结构融合变压器,旨在改善拥挤的人体姿态估计。intertrans使用分层的关节-肢体-语义融合模块将语义特征集成到结构信息中。通过将关节和肢体重新组织成树状结构,融合模块促进了不同结构级别之间的有效信息交换,并利用了全局结构信息和局部上下文细节。此外,我们明确地将肢体结构模式与关节分开建模,将肢体作为具有定义长度和方向的向量。这使得我们的模型可以从最小的输入中推断出完整的人体姿势,大大增强了姿势优化任务。在多个数据集上进行的大量实验表明,在拥挤和闭塞的情况下,intertrans优于现有的姿态估计技术。提出的intertrans作为一种鲁棒的后处理技术,能够在具有挑战性的环境中提高姿态估计的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InferTrans: Hierarchical structural fusion transformer for crowded human pose estimation
Human pose estimation in crowded scenes presents unique challenges due to frequent occlusions and complex interactions between individuals. To address these issues, we introduce InferTrans, a hierarchical structural fusion Transformer designed to improve crowded human pose estimation. InferTrans integrates semantic features into structural information using a hierarchical joint-limb-semantic fusion module. By reorganizing joints and limbs into a tree structure, the fusion module facilitates effective information exchange across different structural levels, and leverage both global structural information and local contextual details. Furthermore, we explicitly model limb structural patterns separately from joints, treating limbs as vectors with defined lengths and orientations. This allows our model to infer complete human poses from minimal input, significantly enhancing pose refinement tasks. Extensive experiments on multiple datasets demonstrate that InferTrans outperforms existing pose estimation techniques in crowded and occluded scenarios. The proposed InferTrans serves as a robust post-processing technique, and is capable of improving the accuracy and robustness of pose estimation in challenging environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Optimizing the environmental design and management of public green spaces: Analyzing urban infrastructure and long-term user experience with a focus on streetlight density in the city of Las Vegas, NV DF-BSFNet: A bilateral synergistic fusion network with novel dynamic flow convolution for robust road extraction KDFuse: A high-level vision task-driven infrared and visible image fusion method based on cross-domain knowledge distillation SelfFed: Self-adaptive Federated Learning with Non-IID data on Heterogeneous Edge Devices for Bias Mitigation and Enhance Training Efficiency DEMO: A Dynamics-Enhanced Learning Model for multi-horizon trajectory prediction in autonomous vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1