Yoo‐Jung Lee, Byounggook Cho, Daeyeol Kwon, Yunkyung Kim, Saemin An, Soi Kang, Jongpil Kim
{"title":"Catalpol通过激活STAT3信号通路促进脑类器官与oRGs的生成","authors":"Yoo‐Jung Lee, Byounggook Cho, Daeyeol Kwon, Yunkyung Kim, Saemin An, Soi Kang, Jongpil Kim","doi":"10.1002/btm2.10746","DOIUrl":null,"url":null,"abstract":"The generation of human cortical organoids containing outer radial glia (oRG) cells is crucial for modeling neocortical development. Here we show that Catalpol, an iridoid glucoside derived from <jats:italic>Rehmannia glutinosa</jats:italic>, significantly enhances the generation of cerebral organoids with expanded oRG populations and increased neurogenic potential. Catalpol‐treated organoids exhibited thicker ventricular zone/subventricular zone (VZ/SVZ) and outer subventricular zone (oSVZ) regions, with increased numbers of SOX2 + HOPX+ and SOX2 + TNC+ oRG cells and elevated expression of oRG markers HOPX and FAM107A. We found that Catalpol promoted oRG generation through non‐vertical divisions of ventricular radial glia (vRG) cells, indicating enhanced oRG generation via asymmetrical divisions. Furthermore, we demonstrated that Catalpol augmented oRG cell numbers through activation of the STAT3 signaling pathway. These findings highlight Catalpol's potential in promoting the generation of cerebral organoids with expanded oRG populations and increased neurogenic potential through STAT3 activation, offering new insights into neocortical development modeling.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"327 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalpol promotes the generation of cerebral organoids with oRGs through activation of STAT3 signaling\",\"authors\":\"Yoo‐Jung Lee, Byounggook Cho, Daeyeol Kwon, Yunkyung Kim, Saemin An, Soi Kang, Jongpil Kim\",\"doi\":\"10.1002/btm2.10746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of human cortical organoids containing outer radial glia (oRG) cells is crucial for modeling neocortical development. Here we show that Catalpol, an iridoid glucoside derived from <jats:italic>Rehmannia glutinosa</jats:italic>, significantly enhances the generation of cerebral organoids with expanded oRG populations and increased neurogenic potential. Catalpol‐treated organoids exhibited thicker ventricular zone/subventricular zone (VZ/SVZ) and outer subventricular zone (oSVZ) regions, with increased numbers of SOX2 + HOPX+ and SOX2 + TNC+ oRG cells and elevated expression of oRG markers HOPX and FAM107A. We found that Catalpol promoted oRG generation through non‐vertical divisions of ventricular radial glia (vRG) cells, indicating enhanced oRG generation via asymmetrical divisions. Furthermore, we demonstrated that Catalpol augmented oRG cell numbers through activation of the STAT3 signaling pathway. These findings highlight Catalpol's potential in promoting the generation of cerebral organoids with expanded oRG populations and increased neurogenic potential through STAT3 activation, offering new insights into neocortical development modeling.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"327 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.10746\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.10746","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Catalpol promotes the generation of cerebral organoids with oRGs through activation of STAT3 signaling
The generation of human cortical organoids containing outer radial glia (oRG) cells is crucial for modeling neocortical development. Here we show that Catalpol, an iridoid glucoside derived from Rehmannia glutinosa, significantly enhances the generation of cerebral organoids with expanded oRG populations and increased neurogenic potential. Catalpol‐treated organoids exhibited thicker ventricular zone/subventricular zone (VZ/SVZ) and outer subventricular zone (oSVZ) regions, with increased numbers of SOX2 + HOPX+ and SOX2 + TNC+ oRG cells and elevated expression of oRG markers HOPX and FAM107A. We found that Catalpol promoted oRG generation through non‐vertical divisions of ventricular radial glia (vRG) cells, indicating enhanced oRG generation via asymmetrical divisions. Furthermore, we demonstrated that Catalpol augmented oRG cell numbers through activation of the STAT3 signaling pathway. These findings highlight Catalpol's potential in promoting the generation of cerebral organoids with expanded oRG populations and increased neurogenic potential through STAT3 activation, offering new insights into neocortical development modeling.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.