同步和异步脑功能网络拓扑结构的对比。

IF 3.6 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00413
Clayton C McIntyre, Mohsen Bahrami, Heather M Shappell, Robert G Lyday, Jeremie Fish, Erik M Bollt, Paul J Laurienti
{"title":"同步和异步脑功能网络拓扑结构的对比。","authors":"Clayton C McIntyre, Mohsen Bahrami, Heather M Shappell, Robert G Lyday, Jeremie Fish, Erik M Bollt, Paul J Laurienti","doi":"10.1162/netn_a_00413","DOIUrl":null,"url":null,"abstract":"<p><p>We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks. After adjusting for differences in network density, aFNs had higher global efficiency but lower local efficiency than the sFNs. In the aFNs, nodes with the highest outgoing global efficiency tended to be in the brainstem and orbitofrontal cortex. aFN nodes with the highest incoming global efficiency tended to be members of the default mode network in sFNs. Age interacted with node global efficiency in aFNs and node local efficiency in sFNs to influence connection probability. We conclude that the sFN and aFN both offer information about functional brain connectivity that the other type of network does not.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 4","pages":"1491-1506"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contrasting topologies of synchronous and asynchronous functional brain networks.\",\"authors\":\"Clayton C McIntyre, Mohsen Bahrami, Heather M Shappell, Robert G Lyday, Jeremie Fish, Erik M Bollt, Paul J Laurienti\",\"doi\":\"10.1162/netn_a_00413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks. After adjusting for differences in network density, aFNs had higher global efficiency but lower local efficiency than the sFNs. In the aFNs, nodes with the highest outgoing global efficiency tended to be in the brainstem and orbitofrontal cortex. aFN nodes with the highest incoming global efficiency tended to be members of the default mode network in sFNs. Age interacted with node global efficiency in aFNs and node local efficiency in sFNs to influence connection probability. We conclude that the sFN and aFN both offer information about functional brain connectivity that the other type of network does not.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"8 4\",\"pages\":\"1491-1506\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00413\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00413","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们使用一种称为最优因果熵的新方法生成了异步功能网络(aFN),并将其拓扑结构与网络神经科学研究中常用的基于关联的同步功能网络(sfn)进行了比较。来自全国青少年酒精与神经发育协会研究的212名参与者的功能磁共振成像(fMRI)时间序列用于生成afn和sfn。为了演示afn和sfn如何串联使用,我们使用多元混合效应模型来确定年龄是否与节点效率相互作用,从而影响两个网络中的连接概率。在调整网络密度差异后,afn的整体效率高于sfn,但局部效率低于sfn。在afn中,输出整体效率最高的节点往往位于脑干和眶额皮质。传入全局效率最高的aFN节点往往是sfn中默认模式网络的成员。年龄与afn节点整体效率和sfn节点局部效率相互作用,影响连接概率。我们的结论是,sFN和aFN都提供了其他类型的网络所没有的关于功能性大脑连接的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contrasting topologies of synchronous and asynchronous functional brain networks.

We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks. After adjusting for differences in network density, aFNs had higher global efficiency but lower local efficiency than the sFNs. In the aFNs, nodes with the highest outgoing global efficiency tended to be in the brainstem and orbitofrontal cortex. aFN nodes with the highest incoming global efficiency tended to be members of the default mode network in sFNs. Age interacted with node global efficiency in aFNs and node local efficiency in sFNs to influence connection probability. We conclude that the sFN and aFN both offer information about functional brain connectivity that the other type of network does not.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
Brain signaling becomes less integrated and more segregated with age. CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Contrasting topologies of synchronous and asynchronous functional brain networks. Exploring memory-related network via dorsal hippocampus suppression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1