{"title":"AmWRKY59激活的几丁质酶AmChi7参与了沙冬虫夏草对冬季气候的适应。","authors":"Qi Liu, Changxin Zhu, Xuting Li, Lanting Qi, Hongxi Yan, Yijun Zhou, Fei Gao","doi":"10.1016/j.plaphy.2024.109436","DOIUrl":null,"url":null,"abstract":"<p><p>Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus. Here, we analyzed the evolution and expression patterns of the chitinase gene family in A. mongolicus and investigated the function and regulatory mechanisms of the AmChi7 gene in response to abiotic stress. The chitinase gene family in A. mongolicus comprises 27 members, many of which arose through formed by tandem and segmental duplication. Several chitinase genes, including AmChi7 gene, were significantly upregulated in winter. Overexpression of AmChi7 gene enhanced the tolerance of yeast to freeze-thaw cycle and osmotic stress, and enhanced the tolerance of transgenic Arabidopsis to low-temperature and drought stress. Furthermore, AmWRKY59, a MeJA-induced transcription factor, bound to the W box element in the AmChi7 gene promoter, activating its expression in winter. It is speculated that chitinase AmChi7 accumulation in winter enhances adaptation to temperate winter climates in A. mongolicus. This study expands our understanding of the biological functions of chitinases and provides insights into the molecular mechanisms underlying winter climate adaptation in A. mongolicus.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109436"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus.\",\"authors\":\"Qi Liu, Changxin Zhu, Xuting Li, Lanting Qi, Hongxi Yan, Yijun Zhou, Fei Gao\",\"doi\":\"10.1016/j.plaphy.2024.109436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus. Here, we analyzed the evolution and expression patterns of the chitinase gene family in A. mongolicus and investigated the function and regulatory mechanisms of the AmChi7 gene in response to abiotic stress. The chitinase gene family in A. mongolicus comprises 27 members, many of which arose through formed by tandem and segmental duplication. Several chitinase genes, including AmChi7 gene, were significantly upregulated in winter. Overexpression of AmChi7 gene enhanced the tolerance of yeast to freeze-thaw cycle and osmotic stress, and enhanced the tolerance of transgenic Arabidopsis to low-temperature and drought stress. Furthermore, AmWRKY59, a MeJA-induced transcription factor, bound to the W box element in the AmChi7 gene promoter, activating its expression in winter. It is speculated that chitinase AmChi7 accumulation in winter enhances adaptation to temperate winter climates in A. mongolicus. This study expands our understanding of the biological functions of chitinases and provides insights into the molecular mechanisms underlying winter climate adaptation in A. mongolicus.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"219 \",\"pages\":\"109436\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109436\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109436","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus.
Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus. Here, we analyzed the evolution and expression patterns of the chitinase gene family in A. mongolicus and investigated the function and regulatory mechanisms of the AmChi7 gene in response to abiotic stress. The chitinase gene family in A. mongolicus comprises 27 members, many of which arose through formed by tandem and segmental duplication. Several chitinase genes, including AmChi7 gene, were significantly upregulated in winter. Overexpression of AmChi7 gene enhanced the tolerance of yeast to freeze-thaw cycle and osmotic stress, and enhanced the tolerance of transgenic Arabidopsis to low-temperature and drought stress. Furthermore, AmWRKY59, a MeJA-induced transcription factor, bound to the W box element in the AmChi7 gene promoter, activating its expression in winter. It is speculated that chitinase AmChi7 accumulation in winter enhances adaptation to temperate winter climates in A. mongolicus. This study expands our understanding of the biological functions of chitinases and provides insights into the molecular mechanisms underlying winter climate adaptation in A. mongolicus.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.