功能关联对任务信息编码的影响。

IF 3.6 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00402
Takuya Ito, John D Murray
{"title":"功能关联对任务信息编码的影响。","authors":"Takuya Ito, John D Murray","doi":"10.1162/netn_a_00402","DOIUrl":null,"url":null,"abstract":"<p><p>State-dependent neural correlations can be understood from a neural coding framework. Noise correlations-trial-to-trial or moment-to-moment covariability-can be interpreted only if the underlying signal correlation-similarity of task selectivity between pairs of neural units-is known. Despite many investigations in local spiking circuits, it remains unclear how this coding framework applies to large-scale brain networks. Here, we investigated relationships between large-scale noise correlations and signal correlations in a multitask human fMRI dataset. We found that task-state noise correlation changes (e.g., functional connectivity) did not typically change in the same direction as their underlying signal correlation (e.g., tuning similarity of two regions). Crucially, noise correlations that changed in the opposite direction as their signal correlation (i.e., anti-aligned correlations) improved information coding of these brain regions. In contrast, noise correlations that changed in the same direction (aligned noise correlations) as their signal correlation did not. Interestingly, these aligned noise correlations were primarily correlation increases, suggesting that most functional correlation increases across fMRI networks actually degrade information coding. These findings illustrate that state-dependent noise correlations shape information coding of functional brain networks, with interpretation of correlation changes requiring knowledge of underlying signal correlations.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 4","pages":"1331-1354"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675092/pdf/","citationCount":"0","resultStr":"{\"title\":\"The impact of functional correlations on task information coding.\",\"authors\":\"Takuya Ito, John D Murray\",\"doi\":\"10.1162/netn_a_00402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>State-dependent neural correlations can be understood from a neural coding framework. Noise correlations-trial-to-trial or moment-to-moment covariability-can be interpreted only if the underlying signal correlation-similarity of task selectivity between pairs of neural units-is known. Despite many investigations in local spiking circuits, it remains unclear how this coding framework applies to large-scale brain networks. Here, we investigated relationships between large-scale noise correlations and signal correlations in a multitask human fMRI dataset. We found that task-state noise correlation changes (e.g., functional connectivity) did not typically change in the same direction as their underlying signal correlation (e.g., tuning similarity of two regions). Crucially, noise correlations that changed in the opposite direction as their signal correlation (i.e., anti-aligned correlations) improved information coding of these brain regions. In contrast, noise correlations that changed in the same direction (aligned noise correlations) as their signal correlation did not. Interestingly, these aligned noise correlations were primarily correlation increases, suggesting that most functional correlation increases across fMRI networks actually degrade information coding. These findings illustrate that state-dependent noise correlations shape information coding of functional brain networks, with interpretation of correlation changes requiring knowledge of underlying signal correlations.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"8 4\",\"pages\":\"1331-1354\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00402\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00402","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

状态相关的神经关联可以从神经编码框架中理解。噪声相关性——试验对试验或时刻对时刻的协变性——只有在潜在的信号相关性——神经单元对之间任务选择的相似性——已知的情况下才能被解释。尽管对局部尖峰电路进行了许多研究,但仍不清楚这种编码框架如何应用于大规模的大脑网络。在这里,我们研究了多任务人类fMRI数据集中大规模噪声相关性和信号相关性之间的关系。我们发现,任务状态噪声相关性的变化(例如,功能连通性)通常不会与其潜在的信号相关性(例如,两个区域的调谐相似性)朝着相同的方向变化。至关重要的是,与信号相关(即反对齐相关)相反方向变化的噪声相关性改善了这些大脑区域的信息编码。相比之下,在相同方向上变化的噪声相关性(对齐噪声相关性)与其信号相关性没有变化。有趣的是,这些排列的噪声相关性主要是相关性增加,这表明fMRI网络中大多数功能相关性的增加实际上降低了信息编码。这些发现表明,状态依赖的噪声相关性塑造了功能性大脑网络的信息编码,对相关变化的解释需要了解潜在的信号相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of functional correlations on task information coding.

State-dependent neural correlations can be understood from a neural coding framework. Noise correlations-trial-to-trial or moment-to-moment covariability-can be interpreted only if the underlying signal correlation-similarity of task selectivity between pairs of neural units-is known. Despite many investigations in local spiking circuits, it remains unclear how this coding framework applies to large-scale brain networks. Here, we investigated relationships between large-scale noise correlations and signal correlations in a multitask human fMRI dataset. We found that task-state noise correlation changes (e.g., functional connectivity) did not typically change in the same direction as their underlying signal correlation (e.g., tuning similarity of two regions). Crucially, noise correlations that changed in the opposite direction as their signal correlation (i.e., anti-aligned correlations) improved information coding of these brain regions. In contrast, noise correlations that changed in the same direction (aligned noise correlations) as their signal correlation did not. Interestingly, these aligned noise correlations were primarily correlation increases, suggesting that most functional correlation increases across fMRI networks actually degrade information coding. These findings illustrate that state-dependent noise correlations shape information coding of functional brain networks, with interpretation of correlation changes requiring knowledge of underlying signal correlations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
Brain signaling becomes less integrated and more segregated with age. CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Contrasting topologies of synchronous and asynchronous functional brain networks. Exploring memory-related network via dorsal hippocampus suppression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1