面向大众的神经肿块建模:使用FastDMF实现全脑生物物理建模的民主化。

IF 3.6 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00410
Rubén Herzog, Pedro A M Mediano, Fernando E Rosas, Andrea I Luppi, Yonatan Sanz-Perl, Enzo Tagliazucchi, Morten L Kringelbach, Rodrigo Cofré, Gustavo Deco
{"title":"面向大众的神经肿块建模:使用FastDMF实现全脑生物物理建模的民主化。","authors":"Rubén Herzog, Pedro A M Mediano, Fernando E Rosas, Andrea I Luppi, Yonatan Sanz-Perl, Enzo Tagliazucchi, Morten L Kringelbach, Rodrigo Cofré, Gustavo Deco","doi":"10.1162/netn_a_00410","DOIUrl":null,"url":null,"abstract":"<p><p>Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances-including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm-the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 4","pages":"1590-1612"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674928/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF.\",\"authors\":\"Rubén Herzog, Pedro A M Mediano, Fernando E Rosas, Andrea I Luppi, Yonatan Sanz-Perl, Enzo Tagliazucchi, Morten L Kringelbach, Rodrigo Cofré, Gustavo Deco\",\"doi\":\"10.1162/netn_a_00410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances-including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm-the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"8 4\",\"pages\":\"1590-1612\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00410\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00410","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

不同的全脑计算模型最近被开发来研究与大脑机制有关的假设。其中,动态平均场(DMF)模型特别有吸引力,它结合了生物物理现实模型,通过平均场方法和多模态成像数据进行缩放。然而,DMF模型广泛使用的一个重要障碍是,目前的实现在计算上是昂贵的,只支持在考虑少于100个大脑区域的大脑分区上的模拟。在这里,我们介绍DMF模型的一个高效且可访问的实现:FastDMF。通过利用分析和数值上的进步——包括反馈抑制控制参数的新估计和贝叶斯优化算法——FastDMF绕过了以前实现的各种计算瓶颈,提高了可解释性、性能和内存使用。此外,这些进步允许FastDMF将模拟区域的数量增加一个数量级,正如在90和1000个区域分割的fMRI数据的良好拟合所证实的那样。这些进展为广泛使用基于生物物理的全脑模型开辟了道路,用于研究解剖学、功能和脑动力学之间的相互作用,并确定从细粒度神经成像记录中获得的最新结果的机制解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF.

Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances-including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm-the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
Brain signaling becomes less integrated and more segregated with age. CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Contrasting topologies of synchronous and asynchronous functional brain networks. Exploring memory-related network via dorsal hippocampus suppression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1