st6gal1介导的PECAM-1唾液酰化促进了转移性乳腺癌肺向性的跨细胞渗出样过程

IF 12.5 1区 医学 Q1 ONCOLOGY Cancer research Pub Date : 2024-12-30 DOI:10.1158/0008-5472.can-24-1550
Shih-Yin Chen, Pei-Lin He, Li-Yu Lu, Meng-Chieh Lin, Shih-Hsuan Chan, Jia-Shiuan Tsai, Wen-Ting Luo, Lu-Hai Wang, Hua-Jung Li
{"title":"st6gal1介导的PECAM-1唾液酰化促进了转移性乳腺癌肺向性的跨细胞渗出样过程","authors":"Shih-Yin Chen, Pei-Lin He, Li-Yu Lu, Meng-Chieh Lin, Shih-Hsuan Chan, Jia-Shiuan Tsai, Wen-Ting Luo, Lu-Hai Wang, Hua-Jung Li","doi":"10.1158/0008-5472.can-24-1550","DOIUrl":null,"url":null,"abstract":"Metastasis is the leading cause of mortality in breast cancer, with lung metastasis being particularly detrimental. Identification of the processes determining metastatic organotropism could enable the development of approaches to prevent and treat breast cancer metastasis. Here, we found that lung-tropic and non-lung-tropic breast cancer cells differ in their response to sialic acids, affecting the sialylation of surface proteins. Lung-tropic cells showed higher levels of ST6GAL1, while non-lung-tropic cells had more ST3GAL1. ST6GAL1-mediated α-2,6-sialylation, unlike ST3GAL1-mediated α-2,3-sialylation, increased lung metastasis by promoting cancer cell migration through pulmonary endothelial layers and reducing junction protein levels. α-2,6-sialylated PECAM-1 on breast cancer cells facilitated extravasation through the pulmonary endothelium, a critical step in lung metastasis. Knockdown of ST6GAL1 or PECAM-1 significantly reduced lung metastasis. Human pulmonary endothelium displayed high PECAM-1 levels. Through transhomophilic interaction with pulmonary PECAM-1, α-2,6-sialylated PECAM-1 on ST6GAL1-positive cancer cells increased pulmonary extravasation in a diapedesis-like, cell-autonomous manner. Additionally, lung-tropic cells and their exosomes increased the permeability of pulmonary endothelial cells, promoting metastasis in a non-cell-autonomous manner. Analysis of human breast cancer samples showed a correlation between elevated ST6GAL1/PECAM-1 expression and lung metastasis. These results suggest that targeting ST6GAL1-mediated α-2,6-sialylation could be a potential therapeutic strategy to prevent lung metastasis in breast cancer patients.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"33 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ST6GAL1-Mediated Sialylation of PECAM-1 Promotes a Transcellular Diapedesis-Like Process that Directs Lung Tropism of Metastatic Breast Cancer\",\"authors\":\"Shih-Yin Chen, Pei-Lin He, Li-Yu Lu, Meng-Chieh Lin, Shih-Hsuan Chan, Jia-Shiuan Tsai, Wen-Ting Luo, Lu-Hai Wang, Hua-Jung Li\",\"doi\":\"10.1158/0008-5472.can-24-1550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metastasis is the leading cause of mortality in breast cancer, with lung metastasis being particularly detrimental. Identification of the processes determining metastatic organotropism could enable the development of approaches to prevent and treat breast cancer metastasis. Here, we found that lung-tropic and non-lung-tropic breast cancer cells differ in their response to sialic acids, affecting the sialylation of surface proteins. Lung-tropic cells showed higher levels of ST6GAL1, while non-lung-tropic cells had more ST3GAL1. ST6GAL1-mediated α-2,6-sialylation, unlike ST3GAL1-mediated α-2,3-sialylation, increased lung metastasis by promoting cancer cell migration through pulmonary endothelial layers and reducing junction protein levels. α-2,6-sialylated PECAM-1 on breast cancer cells facilitated extravasation through the pulmonary endothelium, a critical step in lung metastasis. Knockdown of ST6GAL1 or PECAM-1 significantly reduced lung metastasis. Human pulmonary endothelium displayed high PECAM-1 levels. Through transhomophilic interaction with pulmonary PECAM-1, α-2,6-sialylated PECAM-1 on ST6GAL1-positive cancer cells increased pulmonary extravasation in a diapedesis-like, cell-autonomous manner. Additionally, lung-tropic cells and their exosomes increased the permeability of pulmonary endothelial cells, promoting metastasis in a non-cell-autonomous manner. Analysis of human breast cancer samples showed a correlation between elevated ST6GAL1/PECAM-1 expression and lung metastasis. These results suggest that targeting ST6GAL1-mediated α-2,6-sialylation could be a potential therapeutic strategy to prevent lung metastasis in breast cancer patients.\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-24-1550\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1550","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转移是乳腺癌死亡的主要原因,其中肺转移尤其有害。确定转移性器官亲和性的过程可以促进预防和治疗乳腺癌转移的方法的发展。在这里,我们发现嗜肺和非嗜肺乳腺癌细胞对唾液酸的反应不同,影响表面蛋白的唾液化。肺嗜性细胞ST6GAL1水平较高,非肺嗜性细胞ST3GAL1水平较高。与st3gal1介导的α-2,6-唾液化不同,st6gal1介导的α-2,3-唾液化通过促进癌细胞通过肺内皮层迁移和降低连接蛋白水平来增加肺转移。α-2,6-唾液化的PECAM-1促进乳腺癌细胞通过肺内皮外渗,这是肺转移的关键步骤。敲低ST6GAL1或PECAM-1可显著减少肺转移。人肺内皮细胞显示高PECAM-1水平。通过与肺PECAM-1的嗜浅性相互作用,α-2,6-唾液化的PECAM-1对st6gal1阳性癌细胞以渗出样细胞自主方式增加肺外渗。此外,嗜肺细胞及其外泌体增加了肺内皮细胞的通透性,以非细胞自主的方式促进转移。对人乳腺癌样本的分析显示,ST6GAL1/PECAM-1表达升高与肺转移相关。这些结果表明,靶向st6gal1介导的α-2,6-唾液化可能是预防乳腺癌患者肺转移的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ST6GAL1-Mediated Sialylation of PECAM-1 Promotes a Transcellular Diapedesis-Like Process that Directs Lung Tropism of Metastatic Breast Cancer
Metastasis is the leading cause of mortality in breast cancer, with lung metastasis being particularly detrimental. Identification of the processes determining metastatic organotropism could enable the development of approaches to prevent and treat breast cancer metastasis. Here, we found that lung-tropic and non-lung-tropic breast cancer cells differ in their response to sialic acids, affecting the sialylation of surface proteins. Lung-tropic cells showed higher levels of ST6GAL1, while non-lung-tropic cells had more ST3GAL1. ST6GAL1-mediated α-2,6-sialylation, unlike ST3GAL1-mediated α-2,3-sialylation, increased lung metastasis by promoting cancer cell migration through pulmonary endothelial layers and reducing junction protein levels. α-2,6-sialylated PECAM-1 on breast cancer cells facilitated extravasation through the pulmonary endothelium, a critical step in lung metastasis. Knockdown of ST6GAL1 or PECAM-1 significantly reduced lung metastasis. Human pulmonary endothelium displayed high PECAM-1 levels. Through transhomophilic interaction with pulmonary PECAM-1, α-2,6-sialylated PECAM-1 on ST6GAL1-positive cancer cells increased pulmonary extravasation in a diapedesis-like, cell-autonomous manner. Additionally, lung-tropic cells and their exosomes increased the permeability of pulmonary endothelial cells, promoting metastasis in a non-cell-autonomous manner. Analysis of human breast cancer samples showed a correlation between elevated ST6GAL1/PECAM-1 expression and lung metastasis. These results suggest that targeting ST6GAL1-mediated α-2,6-sialylation could be a potential therapeutic strategy to prevent lung metastasis in breast cancer patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
期刊最新文献
Gli2 Facilitates Tumor Immune Evasion and Immunotherapeutic Resistance by Coordinating Wnt Ligand and Prostaglandin Signaling Targeting PRC2 Enhances the Cytotoxic Capacity of Anti-CD19 CAR-T Cells Against Hematological Malignancies Breast Cancer Subtype-Specific Organotropism Is Dictated by FOXF2-Regulated Metastatic Dormancy and Recovery. A Potent, Selective, Small-Molecule Inhibitor of DHX9 Abrogates Proliferation of Microsatellite Instable Cancers with Deficient Mismatch Repair. Chromatin Helicase CHD6 Establishes Proinflammatory Enhancers and Is a Synthetic Lethal Target in FH-Deficient Renal Cell Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1