阳离子无序尖晶石铁氧体反相界面上的氧空位

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-31 DOI:10.1016/j.jmst.2024.11.048
Zhenhua Zhang, Jinhu Wang, Chenglong Hu, Sateesh Bandaru, Xuefeng Zhang
{"title":"阳离子无序尖晶石铁氧体反相界面上的氧空位","authors":"Zhenhua Zhang, Jinhu Wang, Chenglong Hu, Sateesh Bandaru, Xuefeng Zhang","doi":"10.1016/j.jmst.2024.11.048","DOIUrl":null,"url":null,"abstract":"Antiphase boundaries (APBs) are intrinsic defects in Fe<sub>3</sub>O<sub>4</sub> films that significantly alter their magnetic and transport properties compared to the bulk material due to antiferromagnetic interactions across these boundaries. In the study, we realize ferromagnetically coupled APBs in spinel ferrite by cation disorder and oxygen vacancy defects. Ni and Zn are introduced into Fe<sub>3</sub>O<sub>4</sub> to form Ni and NiZn ferrites and cation disorder is found in the two ferrites with Ni and Zn occupied in both octahedral and tetrahedral sites. This disorder transforms the ferrites from semiconductors into half-metals, characterized by a nonzero majority spin density of states (DOS) and a zero minority spin DOS at Fermi level. The stacking fault of the cations (Fe, Ni, Zn) at the APB induces excess negative charges, leading to the formation of oxygen vacancies as charge compensators. These vacancies disrupt the antiferromagnetic superexchange interactions, preventing spin polarization reversal across the APB, thereby enabling ferromagnetic coupling. This work provides insights into tuning the magnetic properties of APBs in spinel ferrites through defect engineering and cation manipulation.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"334 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancies at antiphase boundaries in cation-disordered spinel ferrite\",\"authors\":\"Zhenhua Zhang, Jinhu Wang, Chenglong Hu, Sateesh Bandaru, Xuefeng Zhang\",\"doi\":\"10.1016/j.jmst.2024.11.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antiphase boundaries (APBs) are intrinsic defects in Fe<sub>3</sub>O<sub>4</sub> films that significantly alter their magnetic and transport properties compared to the bulk material due to antiferromagnetic interactions across these boundaries. In the study, we realize ferromagnetically coupled APBs in spinel ferrite by cation disorder and oxygen vacancy defects. Ni and Zn are introduced into Fe<sub>3</sub>O<sub>4</sub> to form Ni and NiZn ferrites and cation disorder is found in the two ferrites with Ni and Zn occupied in both octahedral and tetrahedral sites. This disorder transforms the ferrites from semiconductors into half-metals, characterized by a nonzero majority spin density of states (DOS) and a zero minority spin DOS at Fermi level. The stacking fault of the cations (Fe, Ni, Zn) at the APB induces excess negative charges, leading to the formation of oxygen vacancies as charge compensators. These vacancies disrupt the antiferromagnetic superexchange interactions, preventing spin polarization reversal across the APB, thereby enabling ferromagnetic coupling. This work provides insights into tuning the magnetic properties of APBs in spinel ferrites through defect engineering and cation manipulation.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"334 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.11.048\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.048","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

反相边界(APBs)是Fe3O4薄膜中的固有缺陷,由于这些边界上的反铁磁相互作用,与块状材料相比,显著改变了其磁性和输运性能。在本研究中,我们利用阳离子无序和氧空位缺陷在尖晶石铁氧体中实现了铁磁偶联apb。将Ni和Zn引入到Fe3O4中形成Ni和NiZn铁氧体,在这两种铁氧体中发现Ni和Zn同时占据八面体和四面体位置的阳离子无序现象。这种无序将铁氧体从半导体转变为半金属,其特征是在费米能级上非零多数自旋态密度(DOS)和零少数自旋态密度。阳离子(Fe, Ni, Zn)在APB处的层错导致了过量的负电荷,从而形成氧空位作为电荷补偿器。这些空位破坏了反铁磁超交换相互作用,阻止了APB上的自旋极化反转,从而实现了铁磁耦合。这项工作为通过缺陷工程和阳离子操纵来调整尖晶石铁氧体中apb的磁性提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxygen vacancies at antiphase boundaries in cation-disordered spinel ferrite
Antiphase boundaries (APBs) are intrinsic defects in Fe3O4 films that significantly alter their magnetic and transport properties compared to the bulk material due to antiferromagnetic interactions across these boundaries. In the study, we realize ferromagnetically coupled APBs in spinel ferrite by cation disorder and oxygen vacancy defects. Ni and Zn are introduced into Fe3O4 to form Ni and NiZn ferrites and cation disorder is found in the two ferrites with Ni and Zn occupied in both octahedral and tetrahedral sites. This disorder transforms the ferrites from semiconductors into half-metals, characterized by a nonzero majority spin density of states (DOS) and a zero minority spin DOS at Fermi level. The stacking fault of the cations (Fe, Ni, Zn) at the APB induces excess negative charges, leading to the formation of oxygen vacancies as charge compensators. These vacancies disrupt the antiferromagnetic superexchange interactions, preventing spin polarization reversal across the APB, thereby enabling ferromagnetic coupling. This work provides insights into tuning the magnetic properties of APBs in spinel ferrites through defect engineering and cation manipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1