超弹性NiTi不完全马氏体相变与弹热性能的温度依赖性:实验与相场模拟

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-31 DOI:10.1016/j.jmst.2024.11.052
Junyu Chen, Qi Zhang, Boxin Wei, Wenqiang Wang, Wenjing Zhang, Liping Lei, Upadrasta Ramamurty, Gang Fang
{"title":"超弹性NiTi不完全马氏体相变与弹热性能的温度依赖性:实验与相场模拟","authors":"Junyu Chen, Qi Zhang, Boxin Wei, Wenqiang Wang, Wenjing Zhang, Liping Lei, Upadrasta Ramamurty, Gang Fang","doi":"10.1016/j.jmst.2024.11.052","DOIUrl":null,"url":null,"abstract":"Partial phase transformation in NiTi-based refrigerants usually enables efficient and durable elastocaloric cooling, but its thermomechanical behavior with varying temperatures remains unclear. Keeping this in view, the elastocaloric effect of NiTi under incomplete transformation across 15–100°C is investigated and a superelastic deformation window between 25–85°C is identified. Synchronous infrared thermography and digital image correlation, and an innovative macro-micro phase-field model are employed to examine martensitic transformation and elastocaloric properties of NiTi within the superelastic window. Experimental and simulated results consistently reveal that the spatiotemporal thermal profiles correlate with Lüders strain band evolution. As superelastic deformation temperature increases, strain localization intensifies, with Lüders bands favoring an inward strain growth over an outward expansion, resulting in a smaller yet more deformed martensitic transformation zone. The aggravated strain inhomogeneity makes the local endothermic undercooling tested at 85°C up to about twice (−30.05°C) that at 25°C (−15.32°C), boosting the global cooling capacity by 65%, despite constant strain. The seeming contradiction between the larger elastocaloric effect and the narrower apparent martensitic transformation zone is elucidated by recourse to the simulations. It is found that the martensitic transformation within the Lüders bands is incomplete, proceeding in a macroscopically uniform but microscopically heterogeneous manner. Elevated temperatures within the superelastic window increase the transformed volume fraction and enhance martensitic transformation, thereby strengthening the global caloric effect. The work sheds light on the interplay between partial martensitic transformation and thermal behavior in NiTi under varying superelastic deformation temperatures, providing insights for advanced elastocaloric cooling applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependence of incomplete martensitic transformation and elastocaloric properties of superelastic NiTi: Experiment and phase-field simulation\",\"authors\":\"Junyu Chen, Qi Zhang, Boxin Wei, Wenqiang Wang, Wenjing Zhang, Liping Lei, Upadrasta Ramamurty, Gang Fang\",\"doi\":\"10.1016/j.jmst.2024.11.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial phase transformation in NiTi-based refrigerants usually enables efficient and durable elastocaloric cooling, but its thermomechanical behavior with varying temperatures remains unclear. Keeping this in view, the elastocaloric effect of NiTi under incomplete transformation across 15–100°C is investigated and a superelastic deformation window between 25–85°C is identified. Synchronous infrared thermography and digital image correlation, and an innovative macro-micro phase-field model are employed to examine martensitic transformation and elastocaloric properties of NiTi within the superelastic window. Experimental and simulated results consistently reveal that the spatiotemporal thermal profiles correlate with Lüders strain band evolution. As superelastic deformation temperature increases, strain localization intensifies, with Lüders bands favoring an inward strain growth over an outward expansion, resulting in a smaller yet more deformed martensitic transformation zone. The aggravated strain inhomogeneity makes the local endothermic undercooling tested at 85°C up to about twice (−30.05°C) that at 25°C (−15.32°C), boosting the global cooling capacity by 65%, despite constant strain. The seeming contradiction between the larger elastocaloric effect and the narrower apparent martensitic transformation zone is elucidated by recourse to the simulations. It is found that the martensitic transformation within the Lüders bands is incomplete, proceeding in a macroscopically uniform but microscopically heterogeneous manner. Elevated temperatures within the superelastic window increase the transformed volume fraction and enhance martensitic transformation, thereby strengthening the global caloric effect. The work sheds light on the interplay between partial martensitic transformation and thermal behavior in NiTi under varying superelastic deformation temperatures, providing insights for advanced elastocaloric cooling applications.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.11.052\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.052","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镍基制冷剂的部分相变通常能够实现高效和持久的弹性热冷却,但其在不同温度下的热力学行为尚不清楚。考虑到这一点,研究了NiTi在15-100°C不完全转变下的弹热效应,并确定了25-85°C之间的超弹性变形窗口。采用同步红外热成像和数字图像相关技术,以及创新的宏观-微观相场模型,研究了NiTi在超弹性窗口内的马氏体相变和弹热性能。实验和模拟结果一致表明,时空热分布与l ders应变带演化相关。随着超弹性变形温度的升高,应变局部化加剧,l德氏带倾向于向内应变增长而不是向外扩展,导致马氏体转变区更小但更变形。应变不均匀性的加剧使得85°C下的局部吸热过冷量达到25°C(- 15.32°C)下的约两倍(- 30.05°C),在恒定应变条件下,将整体冷却能力提高了65%。通过模拟,阐明了较大的弹性热效应与较窄的马氏体相变区之间的矛盾。发现l德氏带内的马氏体相变是不完全的,宏观上是均匀的,微观上是不均匀的。超弹性窗口内温度的升高增加了相变体积分数,增强了马氏体相变,从而增强了整体热效应。这项工作揭示了在不同的超弹性变形温度下,NiTi的部分马氏体转变和热行为之间的相互作用,为先进的弹热冷却应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature dependence of incomplete martensitic transformation and elastocaloric properties of superelastic NiTi: Experiment and phase-field simulation
Partial phase transformation in NiTi-based refrigerants usually enables efficient and durable elastocaloric cooling, but its thermomechanical behavior with varying temperatures remains unclear. Keeping this in view, the elastocaloric effect of NiTi under incomplete transformation across 15–100°C is investigated and a superelastic deformation window between 25–85°C is identified. Synchronous infrared thermography and digital image correlation, and an innovative macro-micro phase-field model are employed to examine martensitic transformation and elastocaloric properties of NiTi within the superelastic window. Experimental and simulated results consistently reveal that the spatiotemporal thermal profiles correlate with Lüders strain band evolution. As superelastic deformation temperature increases, strain localization intensifies, with Lüders bands favoring an inward strain growth over an outward expansion, resulting in a smaller yet more deformed martensitic transformation zone. The aggravated strain inhomogeneity makes the local endothermic undercooling tested at 85°C up to about twice (−30.05°C) that at 25°C (−15.32°C), boosting the global cooling capacity by 65%, despite constant strain. The seeming contradiction between the larger elastocaloric effect and the narrower apparent martensitic transformation zone is elucidated by recourse to the simulations. It is found that the martensitic transformation within the Lüders bands is incomplete, proceeding in a macroscopically uniform but microscopically heterogeneous manner. Elevated temperatures within the superelastic window increase the transformed volume fraction and enhance martensitic transformation, thereby strengthening the global caloric effect. The work sheds light on the interplay between partial martensitic transformation and thermal behavior in NiTi under varying superelastic deformation temperatures, providing insights for advanced elastocaloric cooling applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1