Feiyang Li;Qiang Sun;Xiaomin Chen;Bile Peng;Jiayi Zhang;Kai-Kit Wong
{"title":"物联网无蜂窝大规模MIMO共生无线电:RIS还是BD?","authors":"Feiyang Li;Qiang Sun;Xiaomin Chen;Bile Peng;Jiayi Zhang;Kai-Kit Wong","doi":"10.1109/TWC.2024.3520205","DOIUrl":null,"url":null,"abstract":"Cell-free massive multiple-input multiple-output symbiotic radio (CF-mMIMO-SR) is a promising technology to address the requirements of high-rate and spectrum-efficient communication for the Internet of Things (IoT). However, in the conventional CF-mMIMO-SR system aided by backscatter devices (BDs), the backscatter link is impacted by double fading without any supplementary compensation, resulting in significantly low spectral efficiency (SE) on the backscatter link. To address this issue, we propose the usage of reconfigurable intelligent surfaces (RISs) instead of BD for symbol-level reflection on the backscatter link, leading to a novel RIS-aided CF-mMIMO-SR (RIS-CF-SR) system. In this paper, we conduct a comprehensive analysis of the RIS-CF-SR system considering different levels of cooperation among the access points (APs). Specifically, we analyze the uplink SEs of four different implementations with arbitrary linear processing on both the direct and backscatter links. Moreover, we investigate different signal cancellation schemes based on full or local channel state information (CSI) to improve the SE of the backscatter link. Through the simulation results, we find that RISs can significantly improve the SE of the backscatter link due to the large number of reflection elements, whereas additional appropriate signal processing schemes are required for the direct link. More specifically, from Level 1 to Level 3, RIS-CF-SR does not have significant advantage in SE over BD-CF-SR on the direct link. At Level 4, RIS-CF-SR can outperform BD-CF-SR on the direct link with the MMSE combining scheme.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"24 3","pages":"2311-2324"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-Free Massive MIMO Symbiotic Radio for IoT: RIS or BD?\",\"authors\":\"Feiyang Li;Qiang Sun;Xiaomin Chen;Bile Peng;Jiayi Zhang;Kai-Kit Wong\",\"doi\":\"10.1109/TWC.2024.3520205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-free massive multiple-input multiple-output symbiotic radio (CF-mMIMO-SR) is a promising technology to address the requirements of high-rate and spectrum-efficient communication for the Internet of Things (IoT). However, in the conventional CF-mMIMO-SR system aided by backscatter devices (BDs), the backscatter link is impacted by double fading without any supplementary compensation, resulting in significantly low spectral efficiency (SE) on the backscatter link. To address this issue, we propose the usage of reconfigurable intelligent surfaces (RISs) instead of BD for symbol-level reflection on the backscatter link, leading to a novel RIS-aided CF-mMIMO-SR (RIS-CF-SR) system. In this paper, we conduct a comprehensive analysis of the RIS-CF-SR system considering different levels of cooperation among the access points (APs). Specifically, we analyze the uplink SEs of four different implementations with arbitrary linear processing on both the direct and backscatter links. Moreover, we investigate different signal cancellation schemes based on full or local channel state information (CSI) to improve the SE of the backscatter link. Through the simulation results, we find that RISs can significantly improve the SE of the backscatter link due to the large number of reflection elements, whereas additional appropriate signal processing schemes are required for the direct link. More specifically, from Level 1 to Level 3, RIS-CF-SR does not have significant advantage in SE over BD-CF-SR on the direct link. At Level 4, RIS-CF-SR can outperform BD-CF-SR on the direct link with the MMSE combining scheme.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"24 3\",\"pages\":\"2311-2324\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10817143/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817143/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Cell-Free Massive MIMO Symbiotic Radio for IoT: RIS or BD?
Cell-free massive multiple-input multiple-output symbiotic radio (CF-mMIMO-SR) is a promising technology to address the requirements of high-rate and spectrum-efficient communication for the Internet of Things (IoT). However, in the conventional CF-mMIMO-SR system aided by backscatter devices (BDs), the backscatter link is impacted by double fading without any supplementary compensation, resulting in significantly low spectral efficiency (SE) on the backscatter link. To address this issue, we propose the usage of reconfigurable intelligent surfaces (RISs) instead of BD for symbol-level reflection on the backscatter link, leading to a novel RIS-aided CF-mMIMO-SR (RIS-CF-SR) system. In this paper, we conduct a comprehensive analysis of the RIS-CF-SR system considering different levels of cooperation among the access points (APs). Specifically, we analyze the uplink SEs of four different implementations with arbitrary linear processing on both the direct and backscatter links. Moreover, we investigate different signal cancellation schemes based on full or local channel state information (CSI) to improve the SE of the backscatter link. Through the simulation results, we find that RISs can significantly improve the SE of the backscatter link due to the large number of reflection elements, whereas additional appropriate signal processing schemes are required for the direct link. More specifically, from Level 1 to Level 3, RIS-CF-SR does not have significant advantage in SE over BD-CF-SR on the direct link. At Level 4, RIS-CF-SR can outperform BD-CF-SR on the direct link with the MMSE combining scheme.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.