基于深度学习的无线电传播模型的严格室内无线通信系统仿真

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-12-09 DOI:10.1109/JMMCT.2024.3506693
Stefanos Bakirtzis;Kehai Qiu;Jiming Chen;Hui Song;Jie Zhang;Ian Wassell
{"title":"基于深度学习的无线电传播模型的严格室内无线通信系统仿真","authors":"Stefanos Bakirtzis;Kehai Qiu;Jiming Chen;Hui Song;Jie Zhang;Ian Wassell","doi":"10.1109/JMMCT.2024.3506693","DOIUrl":null,"url":null,"abstract":"Recently, there has been a surge in the development of data-driven propagation models. These models aspire to distill knowledge from propagation solvers or measured data and eventually become capable of predicting characteristics related to radiowave propagation. In this paper, we present the functionality of a generalizable and robust data-driven propagation model that enables efficient and reliable simulations of indoor wireless communication systems (IWCSs). In particular, we modify our previously introduced model, EM DeepRay, to consider the impact of antenna directivity, and we present a training and inference strategy that allows the simulation of large-scale and complicated IWCSs. Our data-driven model is trained over a rich data set comprising diverse building geometries, frequency bands, and antenna radiation patterns. Benchmarking its performance with that of a ray-tracer in complicated IWCSs with real-world measured data yields similar results that have a distinct advantage in terms of computational time. Ultimately, our work paves the way for replacing legacy IWCSs simulators, with high-fidelity artificial intelligence-based models.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"58-68"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models\",\"authors\":\"Stefanos Bakirtzis;Kehai Qiu;Jiming Chen;Hui Song;Jie Zhang;Ian Wassell\",\"doi\":\"10.1109/JMMCT.2024.3506693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been a surge in the development of data-driven propagation models. These models aspire to distill knowledge from propagation solvers or measured data and eventually become capable of predicting characteristics related to radiowave propagation. In this paper, we present the functionality of a generalizable and robust data-driven propagation model that enables efficient and reliable simulations of indoor wireless communication systems (IWCSs). In particular, we modify our previously introduced model, EM DeepRay, to consider the impact of antenna directivity, and we present a training and inference strategy that allows the simulation of large-scale and complicated IWCSs. Our data-driven model is trained over a rich data set comprising diverse building geometries, frequency bands, and antenna radiation patterns. Benchmarking its performance with that of a ray-tracer in complicated IWCSs with real-world measured data yields similar results that have a distinct advantage in terms of computational time. Ultimately, our work paves the way for replacing legacy IWCSs simulators, with high-fidelity artificial intelligence-based models.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"58-68\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10786819/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10786819/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近,数据驱动传播模型的开发出现了激增。这些模型渴望从传播解算器或测量数据中提取知识,并最终能够预测与无线电波传播相关的特性。在本文中,我们提出了一种可推广且鲁棒的数据驱动传播模型的功能,该模型能够高效可靠地模拟室内无线通信系统(IWCSs)。特别是,我们修改了之前引入的模型EM DeepRay,以考虑天线指向性的影响,并提出了一种训练和推理策略,允许模拟大规模和复杂的iwcs。我们的数据驱动模型是在丰富的数据集上训练的,这些数据集包括不同的建筑几何形状、频带和天线辐射模式。将其性能与具有实际测量数据的复杂iwcs中的光线跟踪器进行基准测试,结果相似,在计算时间方面具有明显的优势。最终,我们的工作为用高保真的基于人工智能的模型取代传统的iwcs模拟器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
Recently, there has been a surge in the development of data-driven propagation models. These models aspire to distill knowledge from propagation solvers or measured data and eventually become capable of predicting characteristics related to radiowave propagation. In this paper, we present the functionality of a generalizable and robust data-driven propagation model that enables efficient and reliable simulations of indoor wireless communication systems (IWCSs). In particular, we modify our previously introduced model, EM DeepRay, to consider the impact of antenna directivity, and we present a training and inference strategy that allows the simulation of large-scale and complicated IWCSs. Our data-driven model is trained over a rich data set comprising diverse building geometries, frequency bands, and antenna radiation patterns. Benchmarking its performance with that of a ray-tracer in complicated IWCSs with real-world measured data yields similar results that have a distinct advantage in terms of computational time. Ultimately, our work paves the way for replacing legacy IWCSs simulators, with high-fidelity artificial intelligence-based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1