基于模糊逻辑和遗传算法的医院建筑新风系统智能调节与能耗优化

Q2 Energy Energy Informatics Pub Date : 2024-12-30 DOI:10.1186/s42162-024-00448-7
Jing Peng, Maorui He, Mengting Fan
{"title":"基于模糊逻辑和遗传算法的医院建筑新风系统智能调节与能耗优化","authors":"Jing Peng,&nbsp;Maorui He,&nbsp;Mengting Fan","doi":"10.1186/s42162-024-00448-7","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the intelligent adjustment ability and energy consumption prediction accuracy of the fresh air system in hospital buildings, this study constructs an energy consumption prediction model based on the Back Propagation Neural Network (BPNN). Meanwhile, it introduces the Genetic Algorithm (GA) and Fuzzy Logic Algorithm (FLA) to optimize the BPNN, thus enhancing the model’s global search ability and robustness. By comparing the proposed optimized model with other models, the study analyzes the advantages of the proposed model in terms of prediction accuracy and convergence speed. Moreover, its practical effectiveness in energy consumption and operational cost optimization is evaluated. The results show that the Genetic Algorithm-Fuzzy Logic Algorithm-Back Propagation (GA-FLA-BP) algorithm performs the best in load prediction, with prediction errors typically below 1.5%, particularly on the 5th and 18th days, demonstrating exceptional performance. Compared to the GA-BP and FLA-BP models, the GA-FLA-BP algorithm exhibits stronger capabilities in handling complex data and uncertainty. Regarding energy consumption and electricity cost optimization, GA-FLA-BP also outperforms other models. Its energy consumption prediction accuracy is 91.5% and an electricity cost prediction accuracy is 90.8%, resulting in savings of 29.2% in energy consumption and 31.2% in costs. Although other algorithms show improvements, GA-FLA-BP remains significantly ahead. Furthermore, the GA-FLA-BP algorithm excels in robustness, consistency, time complexity, and real-time performance. This algorithm demonstrates the highest stability and consistency, the fastest processing speed, and the shortest response time, proving its superior performance in energy consumption management and cost optimization. This study enhances the intelligent adjustment capability of the fresh air system in hospital buildings by optimizing the energy consumption prediction model. Therefore, the study significantly reduces energy consumption and operational costs, improving the efficiency and economy of energy management.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00448-7","citationCount":"0","resultStr":"{\"title\":\"Intelligent adjustment and energy consumption optimization of the fresh air system in hospital buildings based on Fuzzy Logic and Genetic Algorithms\",\"authors\":\"Jing Peng,&nbsp;Maorui He,&nbsp;Mengting Fan\",\"doi\":\"10.1186/s42162-024-00448-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve the intelligent adjustment ability and energy consumption prediction accuracy of the fresh air system in hospital buildings, this study constructs an energy consumption prediction model based on the Back Propagation Neural Network (BPNN). Meanwhile, it introduces the Genetic Algorithm (GA) and Fuzzy Logic Algorithm (FLA) to optimize the BPNN, thus enhancing the model’s global search ability and robustness. By comparing the proposed optimized model with other models, the study analyzes the advantages of the proposed model in terms of prediction accuracy and convergence speed. Moreover, its practical effectiveness in energy consumption and operational cost optimization is evaluated. The results show that the Genetic Algorithm-Fuzzy Logic Algorithm-Back Propagation (GA-FLA-BP) algorithm performs the best in load prediction, with prediction errors typically below 1.5%, particularly on the 5th and 18th days, demonstrating exceptional performance. Compared to the GA-BP and FLA-BP models, the GA-FLA-BP algorithm exhibits stronger capabilities in handling complex data and uncertainty. Regarding energy consumption and electricity cost optimization, GA-FLA-BP also outperforms other models. Its energy consumption prediction accuracy is 91.5% and an electricity cost prediction accuracy is 90.8%, resulting in savings of 29.2% in energy consumption and 31.2% in costs. Although other algorithms show improvements, GA-FLA-BP remains significantly ahead. Furthermore, the GA-FLA-BP algorithm excels in robustness, consistency, time complexity, and real-time performance. This algorithm demonstrates the highest stability and consistency, the fastest processing speed, and the shortest response time, proving its superior performance in energy consumption management and cost optimization. This study enhances the intelligent adjustment capability of the fresh air system in hospital buildings by optimizing the energy consumption prediction model. Therefore, the study significantly reduces energy consumption and operational costs, improving the efficiency and economy of energy management.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00448-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00448-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00448-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

为了提高医院建筑新风系统的智能调节能力和能耗预测精度,本研究构建了基于反向传播神经网络(BPNN)的能耗预测模型。同时,引入遗传算法(GA)和模糊逻辑算法(FLA)对bp神经网络进行优化,增强了模型的全局搜索能力和鲁棒性。通过与其他模型的比较,分析了该模型在预测精度和收敛速度方面的优势。并对其在能源消耗和运行成本优化方面的实际效果进行了评价。结果表明,遗传算法-模糊逻辑算法-反向传播(GA-FLA-BP)算法在负荷预测中表现最好,预测误差一般在1.5%以下,特别是在第5天和第18天,表现出优异的性能。与GA-BP和FLA-BP模型相比,GA-FLA-BP算法在处理复杂数据和不确定性方面表现出更强的能力。在能耗和电费优化方面,GA-FLA-BP也优于其他模型。能耗预测准确率为91.5%,电费预测准确率为90.8%,能耗节约29.2%,成本节约31.2%。尽管其他算法也有所改进,GA-FLA-BP仍然遥遥领先。此外,GA-FLA-BP算法具有鲁棒性、一致性、时间复杂度和实时性等优点。该算法具有最高的稳定性和一致性、最快的处理速度和最短的响应时间,证明了其在能耗管理和成本优化方面的优越性能。本研究通过优化能耗预测模型,提高医院建筑新风系统的智能调节能力。因此,本研究显著降低了能源消耗和运行成本,提高了能源管理的效率和经济性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent adjustment and energy consumption optimization of the fresh air system in hospital buildings based on Fuzzy Logic and Genetic Algorithms

To improve the intelligent adjustment ability and energy consumption prediction accuracy of the fresh air system in hospital buildings, this study constructs an energy consumption prediction model based on the Back Propagation Neural Network (BPNN). Meanwhile, it introduces the Genetic Algorithm (GA) and Fuzzy Logic Algorithm (FLA) to optimize the BPNN, thus enhancing the model’s global search ability and robustness. By comparing the proposed optimized model with other models, the study analyzes the advantages of the proposed model in terms of prediction accuracy and convergence speed. Moreover, its practical effectiveness in energy consumption and operational cost optimization is evaluated. The results show that the Genetic Algorithm-Fuzzy Logic Algorithm-Back Propagation (GA-FLA-BP) algorithm performs the best in load prediction, with prediction errors typically below 1.5%, particularly on the 5th and 18th days, demonstrating exceptional performance. Compared to the GA-BP and FLA-BP models, the GA-FLA-BP algorithm exhibits stronger capabilities in handling complex data and uncertainty. Regarding energy consumption and electricity cost optimization, GA-FLA-BP also outperforms other models. Its energy consumption prediction accuracy is 91.5% and an electricity cost prediction accuracy is 90.8%, resulting in savings of 29.2% in energy consumption and 31.2% in costs. Although other algorithms show improvements, GA-FLA-BP remains significantly ahead. Furthermore, the GA-FLA-BP algorithm excels in robustness, consistency, time complexity, and real-time performance. This algorithm demonstrates the highest stability and consistency, the fastest processing speed, and the shortest response time, proving its superior performance in energy consumption management and cost optimization. This study enhances the intelligent adjustment capability of the fresh air system in hospital buildings by optimizing the energy consumption prediction model. Therefore, the study significantly reduces energy consumption and operational costs, improving the efficiency and economy of energy management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1