基于IGA-GRU和多头关注融合机制的锂离子电池SOC预测

Q2 Energy Energy Informatics Pub Date : 2024-12-30 DOI:10.1186/s42162-024-00453-w
Pei Tang, Minnan Jiang, Weikai Xu, Zhengyu Ding, Mao Lv
{"title":"基于IGA-GRU和多头关注融合机制的锂离子电池SOC预测","authors":"Pei Tang,&nbsp;Minnan Jiang,&nbsp;Weikai Xu,&nbsp;Zhengyu Ding,&nbsp;Mao Lv","doi":"10.1186/s42162-024-00453-w","DOIUrl":null,"url":null,"abstract":"<div><p>It is necessary to establish a sufficiently advanced Battery Management System (BMS) for safe driving of electric vehicles. Lithium-ion batteries have been widely used in electric vehicles due to their advantages of high specific energy and low-temperature resistance, so this paper takes lithium-ion batteries as the research object. BMS can monitor various status information of lithium-ion batteries in real-time, and the State of Charge (SOC) of lithium-ion batteries is a key parameter among them. Accurate SOC estimation is crucial for ensuring the safety and reliability of energy storage applications and new energy vehicles. However, the value of SOC cannot be directly measured. In order to more accurately estimate the SOC, this paper proposes a prediction method that combines an immune genetic algorithm, gated recurrent unit, and multi-head attention mechanism (MHA), using battery experimental data from the University of Maryland as the dataset. Compared with the traditional parameter optimization approach, this paper uses the immune genetic algorithm to find the optimal hyperparameters of the model, which on the one hand has a wider choice of parameters, and on the other hand has been improved for the genetic algorithm is easy to fall into the local optimal solution, so as to improve the SOC estimation accuracy of the GRU model. The model also incorporates a multi-attention mechanism to capture different levels of information, which enhances the expressive power of the model. The data preprocessing part adopts the sliding window technique, through which the original time series data is converted into several different training samples when training the machine learning model, as a way to increase the diversity of the dataset and improve the robustness of the model. Finally, the prediction performance of the fusion model proposed in this paper is verified by Pycharm simulation, and the average absolute error, root mean square error and maximum prediction error of the model are 1.62%, 1.55% and 0.5%, respectively, which proves that the model can accurately predict the SOC of lithium-ion battery. It is shown that the model can significantly improve the accuracy and robustness of SOC estimation, enhance the intelligence, real-time and interpretability of the battery management system, and bring a more efficient, safe and long-lasting battery management solution to the fields of electric vehicles and energy storage systems.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00453-w","citationCount":"0","resultStr":"{\"title\":\"Prediction of lithium-ion battery SOC based on IGA-GRU and the fusion of multi-head attention mechanism\",\"authors\":\"Pei Tang,&nbsp;Minnan Jiang,&nbsp;Weikai Xu,&nbsp;Zhengyu Ding,&nbsp;Mao Lv\",\"doi\":\"10.1186/s42162-024-00453-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is necessary to establish a sufficiently advanced Battery Management System (BMS) for safe driving of electric vehicles. Lithium-ion batteries have been widely used in electric vehicles due to their advantages of high specific energy and low-temperature resistance, so this paper takes lithium-ion batteries as the research object. BMS can monitor various status information of lithium-ion batteries in real-time, and the State of Charge (SOC) of lithium-ion batteries is a key parameter among them. Accurate SOC estimation is crucial for ensuring the safety and reliability of energy storage applications and new energy vehicles. However, the value of SOC cannot be directly measured. In order to more accurately estimate the SOC, this paper proposes a prediction method that combines an immune genetic algorithm, gated recurrent unit, and multi-head attention mechanism (MHA), using battery experimental data from the University of Maryland as the dataset. Compared with the traditional parameter optimization approach, this paper uses the immune genetic algorithm to find the optimal hyperparameters of the model, which on the one hand has a wider choice of parameters, and on the other hand has been improved for the genetic algorithm is easy to fall into the local optimal solution, so as to improve the SOC estimation accuracy of the GRU model. The model also incorporates a multi-attention mechanism to capture different levels of information, which enhances the expressive power of the model. The data preprocessing part adopts the sliding window technique, through which the original time series data is converted into several different training samples when training the machine learning model, as a way to increase the diversity of the dataset and improve the robustness of the model. Finally, the prediction performance of the fusion model proposed in this paper is verified by Pycharm simulation, and the average absolute error, root mean square error and maximum prediction error of the model are 1.62%, 1.55% and 0.5%, respectively, which proves that the model can accurately predict the SOC of lithium-ion battery. It is shown that the model can significantly improve the accuracy and robustness of SOC estimation, enhance the intelligence, real-time and interpretability of the battery management system, and bring a more efficient, safe and long-lasting battery management solution to the fields of electric vehicles and energy storage systems.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00453-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00453-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00453-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

为了保证电动汽车的安全行驶,有必要建立足够先进的电池管理系统(BMS)。锂离子电池由于具有高比能和耐低温等优点,在电动汽车中得到了广泛的应用,因此本文以锂离子电池为研究对象。BMS可以实时监测锂离子电池的各种状态信息,而锂离子电池的荷电状态(SOC)是其中的关键参数。准确的SOC估算对于保证储能应用和新能源汽车的安全可靠性至关重要。然而,SOC的值不能直接测量。为了更准确地估计SOC,本文以马里兰大学电池实验数据为数据集,提出了一种结合免疫遗传算法、门控循环单元和多头注意机制(MHA)的SOC预测方法。与传统的参数优化方法相比,本文采用免疫遗传算法寻找模型的最优超参数,一方面具有更广泛的参数选择范围,另一方面针对遗传算法容易陷入局部最优解的问题进行了改进,从而提高了GRU模型SOC估计的精度。该模型还结合了多注意机制来捕获不同层次的信息,增强了模型的表达能力。数据预处理部分采用滑动窗口技术,在训练机器学习模型时,将原始时间序列数据转换为多个不同的训练样本,增加数据集的多样性,提高模型的鲁棒性。最后,通过Pycharm仿真验证了本文提出的融合模型的预测性能,模型的平均绝对误差、均方根误差和最大预测误差分别为1.62%、1.55%和0.5%,证明该模型能够准确预测锂离子电池的荷电状态。结果表明,该模型能显著提高电池荷电状态估计的准确性和鲁棒性,增强电池管理系统的智能性、实时性和可解释性,为电动汽车和储能系统领域带来更高效、安全、持久的电池管理解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of lithium-ion battery SOC based on IGA-GRU and the fusion of multi-head attention mechanism

It is necessary to establish a sufficiently advanced Battery Management System (BMS) for safe driving of electric vehicles. Lithium-ion batteries have been widely used in electric vehicles due to their advantages of high specific energy and low-temperature resistance, so this paper takes lithium-ion batteries as the research object. BMS can monitor various status information of lithium-ion batteries in real-time, and the State of Charge (SOC) of lithium-ion batteries is a key parameter among them. Accurate SOC estimation is crucial for ensuring the safety and reliability of energy storage applications and new energy vehicles. However, the value of SOC cannot be directly measured. In order to more accurately estimate the SOC, this paper proposes a prediction method that combines an immune genetic algorithm, gated recurrent unit, and multi-head attention mechanism (MHA), using battery experimental data from the University of Maryland as the dataset. Compared with the traditional parameter optimization approach, this paper uses the immune genetic algorithm to find the optimal hyperparameters of the model, which on the one hand has a wider choice of parameters, and on the other hand has been improved for the genetic algorithm is easy to fall into the local optimal solution, so as to improve the SOC estimation accuracy of the GRU model. The model also incorporates a multi-attention mechanism to capture different levels of information, which enhances the expressive power of the model. The data preprocessing part adopts the sliding window technique, through which the original time series data is converted into several different training samples when training the machine learning model, as a way to increase the diversity of the dataset and improve the robustness of the model. Finally, the prediction performance of the fusion model proposed in this paper is verified by Pycharm simulation, and the average absolute error, root mean square error and maximum prediction error of the model are 1.62%, 1.55% and 0.5%, respectively, which proves that the model can accurately predict the SOC of lithium-ion battery. It is shown that the model can significantly improve the accuracy and robustness of SOC estimation, enhance the intelligence, real-time and interpretability of the battery management system, and bring a more efficient, safe and long-lasting battery management solution to the fields of electric vehicles and energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1