基于机器学习预测含氧微藻-细菌生物膜中的非曝气线性烷基苯磺酸盐矿化。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-12-28 DOI:10.1016/j.biortech.2024.132028
Libo Xia, Beibei Wu, Xiaocai Cui, Ting Ran, Qian Li, Yun Zhou
{"title":"基于机器学习预测含氧微藻-细菌生物膜中的非曝气线性烷基苯磺酸盐矿化。","authors":"Libo Xia, Beibei Wu, Xiaocai Cui, Ting Ran, Qian Li, Yun Zhou","doi":"10.1016/j.biortech.2024.132028","DOIUrl":null,"url":null,"abstract":"<p><p>Microalgal-bacteria biofilm shows great potential in low-cost greywater treatment. Accurately predicting treated greywater quality is of great significance for water reuse. In this work, machine learning models were developed for simulating and predicting linear alkylbenzene sulfonate (LAS) removal using 152-days collected data from a battled oxygenic microalgal-bacteria biofilm reactor (MBBfR). By using nine variables including influent LAS, hydraulic retention time (HRT), biofilm density and thickness, specific oxygen production and consumption rates, microalgae and bacteria concentrations, and dissolved oxygen (DO), the support vector machine (SVM) model enabled the accurate LAS removal prediction (training set: R<sup>2</sup> = 0.995, (root mean square error, RMSE) = 0.076, (mean absolute error, MAE) = 0.069; testing set: R<sup>2</sup> = 0.961, RMSE = 0.251, MAE = 0.153). SVM can be also successfully applied for MBBfR operation optimization (HRT = 4.28 h, DO = 0.25 mg/L) that achieving accurate prediction of LAS mineralization.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132028"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based prediction of non-aeration linear alkylbenzene sulfonate mineralization in an oxygenic microalgal-bacteria biofilm.\",\"authors\":\"Libo Xia, Beibei Wu, Xiaocai Cui, Ting Ran, Qian Li, Yun Zhou\",\"doi\":\"10.1016/j.biortech.2024.132028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microalgal-bacteria biofilm shows great potential in low-cost greywater treatment. Accurately predicting treated greywater quality is of great significance for water reuse. In this work, machine learning models were developed for simulating and predicting linear alkylbenzene sulfonate (LAS) removal using 152-days collected data from a battled oxygenic microalgal-bacteria biofilm reactor (MBBfR). By using nine variables including influent LAS, hydraulic retention time (HRT), biofilm density and thickness, specific oxygen production and consumption rates, microalgae and bacteria concentrations, and dissolved oxygen (DO), the support vector machine (SVM) model enabled the accurate LAS removal prediction (training set: R<sup>2</sup> = 0.995, (root mean square error, RMSE) = 0.076, (mean absolute error, MAE) = 0.069; testing set: R<sup>2</sup> = 0.961, RMSE = 0.251, MAE = 0.153). SVM can be also successfully applied for MBBfR operation optimization (HRT = 4.28 h, DO = 0.25 mg/L) that achieving accurate prediction of LAS mineralization.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"132028\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.132028\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.132028","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

微藻-细菌生物膜在低成本污水处理中具有很大的应用潜力。准确预测处理后的中水水质对中水回用具有重要意义。在这项工作中,开发了用于模拟和预测线性烷基苯磺酸(LAS)去除的机器学习模型,使用了从抗氧微藻-细菌生物膜反应器(MBBfR)收集的152天数据。利用进水LAS、水力停留时间(HRT)、生物膜密度和厚度、比氧产量和耗氧量、微藻和细菌浓度、溶解氧(DO)等9个变量,支持向量机(SVM)模型能够准确预测LAS去除效果(训练集:R2 = 0.995,(均方根误差,RMSE) = 0.076,(平均绝对误差,MAE) = 0.069;测试集:R2 = 0.961,RMSE = 0.251,梅 = 0.153)。支持向量机也可成功应用于MBBfR操作优化(HRT = 4.28 h, DO = 0.25 mg/L),实现LAS矿化的准确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-based prediction of non-aeration linear alkylbenzene sulfonate mineralization in an oxygenic microalgal-bacteria biofilm.

Microalgal-bacteria biofilm shows great potential in low-cost greywater treatment. Accurately predicting treated greywater quality is of great significance for water reuse. In this work, machine learning models were developed for simulating and predicting linear alkylbenzene sulfonate (LAS) removal using 152-days collected data from a battled oxygenic microalgal-bacteria biofilm reactor (MBBfR). By using nine variables including influent LAS, hydraulic retention time (HRT), biofilm density and thickness, specific oxygen production and consumption rates, microalgae and bacteria concentrations, and dissolved oxygen (DO), the support vector machine (SVM) model enabled the accurate LAS removal prediction (training set: R2 = 0.995, (root mean square error, RMSE) = 0.076, (mean absolute error, MAE) = 0.069; testing set: R2 = 0.961, RMSE = 0.251, MAE = 0.153). SVM can be also successfully applied for MBBfR operation optimization (HRT = 4.28 h, DO = 0.25 mg/L) that achieving accurate prediction of LAS mineralization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Sustainability assessment of blue hydrogen production through biomass gasification: A comparative analysis of thermal, solar, and wind energy sources. Economic and demonstrative pilot-scale harvesting of microalgae biomass via novel combined process of dissolved air flotation and screw-press filtration. Effect of inoculated sludge concentration on start-up of anammox reactor: Nitrogen removal performance and metabolic pathways. Enhancement of the yield of poly (ethylene terephthalate) hydrolase production using cell membrane protection strategy. Combining Tenebrio molitor frass with inorganic nitrogen fertilizer to improve soil properties, growth parameters, and nutrient content of Sonchus oleraceus crop.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1