Hongshuang Wang, Ziheng Wei, Chang Xu, Fang Fang, Zheng Wang, Yan Zhong, Xiangting Wang
{"title":"SPDEF通过NR4A1的转录激活改善uuo诱导的肾纤维化。","authors":"Hongshuang Wang, Ziheng Wei, Chang Xu, Fang Fang, Zheng Wang, Yan Zhong, Xiangting Wang","doi":"10.1186/s10020-024-01030-3","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear receptor 4A1 (NR4A1) is a gene that increases the likelihood of chronic kidney disease (CKD) and contributes to its development. Previous research has shown that the SAM pointed domain containing Ets transformation-specific transcription factor (SPDEF) can activate NR4A1, but its mechanism of action in renal fibrosis is not yet clear. In this study, we used adenovirus to create a mouse kidney model with a specific knockdown of NR4A1 gene. Our results showed that the knockdown of NR4A1 can accelerate unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice, and overexpression of NR4A1 can significantly reduce transforming growth factor-β1-induced (TGF-β1) fibrosis in HK-2 cells. Additionally, we found that overexpression of SPDEF can improve UUO-induced renal fibrosis in mice and TGF-β1-induced fibrosis in HK-2 by transcriptionally activating NR4A1. These findings suggest that SPDEF can activate NR4A1 transcriptionally and improve renal fibrosis.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"282"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684154/pdf/","citationCount":"0","resultStr":"{\"title\":\"SPDEF ameliorates UUO-induced renal fibrosis by transcriptional activation of NR4A1.\",\"authors\":\"Hongshuang Wang, Ziheng Wei, Chang Xu, Fang Fang, Zheng Wang, Yan Zhong, Xiangting Wang\",\"doi\":\"10.1186/s10020-024-01030-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nuclear receptor 4A1 (NR4A1) is a gene that increases the likelihood of chronic kidney disease (CKD) and contributes to its development. Previous research has shown that the SAM pointed domain containing Ets transformation-specific transcription factor (SPDEF) can activate NR4A1, but its mechanism of action in renal fibrosis is not yet clear. In this study, we used adenovirus to create a mouse kidney model with a specific knockdown of NR4A1 gene. Our results showed that the knockdown of NR4A1 can accelerate unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice, and overexpression of NR4A1 can significantly reduce transforming growth factor-β1-induced (TGF-β1) fibrosis in HK-2 cells. Additionally, we found that overexpression of SPDEF can improve UUO-induced renal fibrosis in mice and TGF-β1-induced fibrosis in HK-2 by transcriptionally activating NR4A1. These findings suggest that SPDEF can activate NR4A1 transcriptionally and improve renal fibrosis.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"30 1\",\"pages\":\"282\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684154/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-01030-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-01030-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SPDEF ameliorates UUO-induced renal fibrosis by transcriptional activation of NR4A1.
Nuclear receptor 4A1 (NR4A1) is a gene that increases the likelihood of chronic kidney disease (CKD) and contributes to its development. Previous research has shown that the SAM pointed domain containing Ets transformation-specific transcription factor (SPDEF) can activate NR4A1, but its mechanism of action in renal fibrosis is not yet clear. In this study, we used adenovirus to create a mouse kidney model with a specific knockdown of NR4A1 gene. Our results showed that the knockdown of NR4A1 can accelerate unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice, and overexpression of NR4A1 can significantly reduce transforming growth factor-β1-induced (TGF-β1) fibrosis in HK-2 cells. Additionally, we found that overexpression of SPDEF can improve UUO-induced renal fibrosis in mice and TGF-β1-induced fibrosis in HK-2 by transcriptionally activating NR4A1. These findings suggest that SPDEF can activate NR4A1 transcriptionally and improve renal fibrosis.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.