微生物群落对厌氧氨氧化反应器运行稳定性的贡献:中性理论和功能冗余的观点。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-12-29 DOI:10.1016/j.biortech.2024.132029
Hoang Phuc Trinh, Sang-Hoon Lee, Thi Vinh Nguyen, Hee-Deung Park
{"title":"微生物群落对厌氧氨氧化反应器运行稳定性的贡献:中性理论和功能冗余的观点。","authors":"Hoang Phuc Trinh, Sang-Hoon Lee, Thi Vinh Nguyen, Hee-Deung Park","doi":"10.1016/j.biortech.2024.132029","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time. A high value of functional redundancy (0.82) was obtained, with 84.6% of the microbial species following the neutral community model in stochastic processes, thus maintaining the stability of the dominant species and function in the microbial community. This study represents an initial attempt to quantify and evaluate the importance of functional redundancy in an anammox reactor. Based on these findings, engineering strategies have also been proposed to preserve high functional redundancy in stabilizing system performance under varying operating conditions.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132029"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives.\",\"authors\":\"Hoang Phuc Trinh, Sang-Hoon Lee, Thi Vinh Nguyen, Hee-Deung Park\",\"doi\":\"10.1016/j.biortech.2024.132029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time. A high value of functional redundancy (0.82) was obtained, with 84.6% of the microbial species following the neutral community model in stochastic processes, thus maintaining the stability of the dominant species and function in the microbial community. This study represents an initial attempt to quantify and evaluate the importance of functional redundancy in an anammox reactor. Based on these findings, engineering strategies have also been proposed to preserve high functional redundancy in stabilizing system performance under varying operating conditions.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"132029\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.132029\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.132029","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

全面了解微生物组合对于实现生物废水处理的稳定性能至关重要。然而,很少有研究详细地量化这些现象,特别是在厌氧氨氧化工艺中。本研究将数学和微生物方法结合起来,分析了一个330天的厌氧氨氧化反应器,在高氮负荷率、氮浓度和水力停留时间发生变化的情况下,其稳定的氮去除效率(97 - 99%)。得到了较高的功能冗余值(0.82),84.6%的微生物物种在随机过程中遵循中性群落模型,从而保持了微生物群落中优势物种和功能的稳定性。本研究是对厌氧氨氧化反应器中功能冗余的重要性进行量化和评估的初步尝试。基于这些发现,还提出了工程策略,以保持高功能冗余,在不同的操作条件下稳定系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives.

A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time. A high value of functional redundancy (0.82) was obtained, with 84.6% of the microbial species following the neutral community model in stochastic processes, thus maintaining the stability of the dominant species and function in the microbial community. This study represents an initial attempt to quantify and evaluate the importance of functional redundancy in an anammox reactor. Based on these findings, engineering strategies have also been proposed to preserve high functional redundancy in stabilizing system performance under varying operating conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Sustainability assessment of blue hydrogen production through biomass gasification: A comparative analysis of thermal, solar, and wind energy sources. Economic and demonstrative pilot-scale harvesting of microalgae biomass via novel combined process of dissolved air flotation and screw-press filtration. Effect of inoculated sludge concentration on start-up of anammox reactor: Nitrogen removal performance and metabolic pathways. Enhancement of the yield of poly (ethylene terephthalate) hydrolase production using cell membrane protection strategy. Combining Tenebrio molitor frass with inorganic nitrogen fertilizer to improve soil properties, growth parameters, and nutrient content of Sonchus oleraceus crop.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1