HOXA3通过促进SQSTM1去泛素化,激活USP15抑制肾癌细胞自噬,促进m2型巨噬细胞极化。

IF 5 2区 生物学 Q2 CELL BIOLOGY American journal of physiology. Cell physiology Pub Date : 2025-02-01 Epub Date: 2024-12-31 DOI:10.1152/ajpcell.00712.2024
Huihuang Li, Yang Li, Zhiyong Chen, Cheng He
{"title":"HOXA3通过促进SQSTM1去泛素化,激活USP15抑制肾癌细胞自噬,促进m2型巨噬细胞极化。","authors":"Huihuang Li, Yang Li, Zhiyong Chen, Cheng He","doi":"10.1152/ajpcell.00712.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The disease burden of renal cell carcinoma (RCC) has decreased in recent years with advances in treatment, but its pathogeny still remains elusive. We aim to study the role of homeobox A3 (HOXA3)/ubiquitin-specific peptidase 15 (USP15)/SQSTM1 axis on autophagy and M2-type macrophage polarization in RCC. In this study, cell apoptosis and proliferation were assessed by flow cytometry and CCK-8. Autolysosome fusion was observed by immunofluorescence detection of LC3 and LAMP2. The binding between HOXA3 and USP15 promoter was tested by chromatin immunoprecipitation (ChIP), EMSA, and dual-luciferase reporter assays. Also, the interaction between deubiquitinated enzyme (DUB) USP15 and SQSTM1, and ubiquitinated level of SQSTM1 were determined by co-immunoprecipitation (Co-IP) assay. Expression levels of HOXA3, USP15, C-C motif chemokine 2 (CCL2), CCL2 receptor (CCR2), M2-type macrophages, and autophagy-related markers were measured by Western blot, quantitative reverse transcription PCR (RT-qPCR), ELISA, and immunohistochemistry. Role of HOXA3/USP15 axis was verified by xenograft tumor experiment in vivo. We showed upregulated HOXA3 in RCC tissues and cells, and RCC tissues with metastasis showed higher HOXA3 level. The higher HOXA3 expression was relevant to worse overall survival in patients with RCC. HOXA3 induced RCC cell proliferation, and suppressed autophagy and apoptosis via transcriptionally activating USP15 expression. USP15 then induced deubiquitination modification of SQSTM1 in RCC cells. SQSTM1 supported M2-type macrophage polarization by inducing CCL2 secretion. HOXA3 or USP15 knockdown suppressed tumor growth and M2-type macrophage infiltration in vivo. In conclusion, HOXA3 transcriptionally activates USP15 expression, and upregulated USP15 facilitates the deubiquitination of SQSTM1 in RCC. This process on the one hand suppresses autophagy, on the other hand increases M2-type macrophage polarization through stimulating the secretion of CCL2.<b>NEW & NOTEWORTHY</b> We report a novel finding that highly expressed homeobox A3 (HOXA3) transcriptionally activates the expression of ubiquitin-specific peptidase 15 (USP15), resulting in the promotion of deubiquitination of SQSTM1. This process on the one hand suppresses autophagy in renal cell carcinoma (RCC), on the other hand increases M2-type macrophage polarization in the tumor microenvironment through stimulating the secretion of C-C motif chemokine 2 (CCL2).</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C576-C594"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HOXA3 activates USP15 to suppress autophagy and promote M2-type macrophage polarization in renal cell carcinoma via facilitating the deubiquitination of SQSTM1.\",\"authors\":\"Huihuang Li, Yang Li, Zhiyong Chen, Cheng He\",\"doi\":\"10.1152/ajpcell.00712.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The disease burden of renal cell carcinoma (RCC) has decreased in recent years with advances in treatment, but its pathogeny still remains elusive. We aim to study the role of homeobox A3 (HOXA3)/ubiquitin-specific peptidase 15 (USP15)/SQSTM1 axis on autophagy and M2-type macrophage polarization in RCC. In this study, cell apoptosis and proliferation were assessed by flow cytometry and CCK-8. Autolysosome fusion was observed by immunofluorescence detection of LC3 and LAMP2. The binding between HOXA3 and USP15 promoter was tested by chromatin immunoprecipitation (ChIP), EMSA, and dual-luciferase reporter assays. Also, the interaction between deubiquitinated enzyme (DUB) USP15 and SQSTM1, and ubiquitinated level of SQSTM1 were determined by co-immunoprecipitation (Co-IP) assay. Expression levels of HOXA3, USP15, C-C motif chemokine 2 (CCL2), CCL2 receptor (CCR2), M2-type macrophages, and autophagy-related markers were measured by Western blot, quantitative reverse transcription PCR (RT-qPCR), ELISA, and immunohistochemistry. Role of HOXA3/USP15 axis was verified by xenograft tumor experiment in vivo. We showed upregulated HOXA3 in RCC tissues and cells, and RCC tissues with metastasis showed higher HOXA3 level. The higher HOXA3 expression was relevant to worse overall survival in patients with RCC. HOXA3 induced RCC cell proliferation, and suppressed autophagy and apoptosis via transcriptionally activating USP15 expression. USP15 then induced deubiquitination modification of SQSTM1 in RCC cells. SQSTM1 supported M2-type macrophage polarization by inducing CCL2 secretion. HOXA3 or USP15 knockdown suppressed tumor growth and M2-type macrophage infiltration in vivo. In conclusion, HOXA3 transcriptionally activates USP15 expression, and upregulated USP15 facilitates the deubiquitination of SQSTM1 in RCC. This process on the one hand suppresses autophagy, on the other hand increases M2-type macrophage polarization through stimulating the secretion of CCL2.<b>NEW & NOTEWORTHY</b> We report a novel finding that highly expressed homeobox A3 (HOXA3) transcriptionally activates the expression of ubiquitin-specific peptidase 15 (USP15), resulting in the promotion of deubiquitination of SQSTM1. This process on the one hand suppresses autophagy in renal cell carcinoma (RCC), on the other hand increases M2-type macrophage polarization in the tumor microenvironment through stimulating the secretion of C-C motif chemokine 2 (CCL2).</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C576-C594\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00712.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00712.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肾细胞癌(RCC)的疾病负担近年来随着治疗的进展有所下降,但其病因仍不清楚。我们旨在研究HOXA3/USP15/SQSTM1轴在RCC自噬和m2型巨噬细胞极化中的作用。本研究采用流式细胞术和CCK-8检测细胞凋亡和增殖。免疫荧光检测LC3和LAMP2观察自溶酶体融合。通过ChIP、EMSA和双荧光素酶报告基因检测来检测HOXA3与USP15启动子之间的结合。用Co-IP法测定去泛素化酶USP15与SQSTM1的相互作用以及SQSTM1的泛素化水平。采用western blot、RT-qPCR、ELISA、免疫组化检测巨噬细胞HOXA3、USP15、CCL2、CCR2、m2型巨噬细胞及自噬相关标志物的表达水平。HOXA3/USP15轴的作用通过体内异种移植肿瘤实验得到验证。我们发现,HOXA3在RCC组织和细胞中表达上调,且有转移的RCC组织中HOXA3表达升高。在RCC患者中,较高的HOXA3表达与较差的总生存率相关。HOXA3通过转录激活USP15表达,诱导RCC细胞增殖,抑制细胞自噬和凋亡。然后USP15诱导RCC细胞中SQSTM1的去泛素化修饰。SQSTM1通过诱导CCL2分泌支持m2型巨噬细胞极化。体内敲低HOXA3或USP15抑制肿瘤生长和m2型巨噬细胞浸润。综上所述,HOXA3转录激活了USP15的表达,USP15的上调促进了RCC中SQSTM1的去泛素化。这一过程一方面抑制自噬,另一方面通过刺激CCL2的分泌增加m2型巨噬细胞的极化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HOXA3 activates USP15 to suppress autophagy and promote M2-type macrophage polarization in renal cell carcinoma via facilitating the deubiquitination of SQSTM1.

The disease burden of renal cell carcinoma (RCC) has decreased in recent years with advances in treatment, but its pathogeny still remains elusive. We aim to study the role of homeobox A3 (HOXA3)/ubiquitin-specific peptidase 15 (USP15)/SQSTM1 axis on autophagy and M2-type macrophage polarization in RCC. In this study, cell apoptosis and proliferation were assessed by flow cytometry and CCK-8. Autolysosome fusion was observed by immunofluorescence detection of LC3 and LAMP2. The binding between HOXA3 and USP15 promoter was tested by chromatin immunoprecipitation (ChIP), EMSA, and dual-luciferase reporter assays. Also, the interaction between deubiquitinated enzyme (DUB) USP15 and SQSTM1, and ubiquitinated level of SQSTM1 were determined by co-immunoprecipitation (Co-IP) assay. Expression levels of HOXA3, USP15, C-C motif chemokine 2 (CCL2), CCL2 receptor (CCR2), M2-type macrophages, and autophagy-related markers were measured by Western blot, quantitative reverse transcription PCR (RT-qPCR), ELISA, and immunohistochemistry. Role of HOXA3/USP15 axis was verified by xenograft tumor experiment in vivo. We showed upregulated HOXA3 in RCC tissues and cells, and RCC tissues with metastasis showed higher HOXA3 level. The higher HOXA3 expression was relevant to worse overall survival in patients with RCC. HOXA3 induced RCC cell proliferation, and suppressed autophagy and apoptosis via transcriptionally activating USP15 expression. USP15 then induced deubiquitination modification of SQSTM1 in RCC cells. SQSTM1 supported M2-type macrophage polarization by inducing CCL2 secretion. HOXA3 or USP15 knockdown suppressed tumor growth and M2-type macrophage infiltration in vivo. In conclusion, HOXA3 transcriptionally activates USP15 expression, and upregulated USP15 facilitates the deubiquitination of SQSTM1 in RCC. This process on the one hand suppresses autophagy, on the other hand increases M2-type macrophage polarization through stimulating the secretion of CCL2.NEW & NOTEWORTHY We report a novel finding that highly expressed homeobox A3 (HOXA3) transcriptionally activates the expression of ubiquitin-specific peptidase 15 (USP15), resulting in the promotion of deubiquitination of SQSTM1. This process on the one hand suppresses autophagy in renal cell carcinoma (RCC), on the other hand increases M2-type macrophage polarization in the tumor microenvironment through stimulating the secretion of C-C motif chemokine 2 (CCL2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
期刊最新文献
An Endogenous Aryl Hydrocarbon Receptor Ligand Dysregulates Endothelial Functions, Transcriptome, and Phosphoproteome. Effects of oral γ-aminobutyric acid intake on muscle regeneration in diabetic mice. Inflammation induced PFKFB3-mediated glycolysis promoting myometrium contraction through the PI3K-Akt-mTOR pathway in preterm birth mice. Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training. Histone lactylation-mediated overexpression of RASD2 promotes endometriosis progression via upregulating the SUMOylation of CTPS1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1