Sergei A Fedotov, Andrei V Stepanov, Galina A Sakuta, Ivan S Andreev, Marina S Ivanova, Ekaterina V Baidyuk
{"title":"疾病晚期大鼠梗死后心肌细胞超微结构重构的研究","authors":"Sergei A Fedotov, Andrei V Stepanov, Galina A Sakuta, Ivan S Andreev, Marina S Ivanova, Ekaterina V Baidyuk","doi":"10.1002/cyto.a.24915","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying factors that contribute to the transition to the dilated phase in cardiac ischemia is a critical challenge in heart failure treatment. Currently, no effective therapies exist for this ischemic complication, and the mechanisms driving left ventricular dilatation during chronic post-infarction remodeling remain poorly understood. One potential pathological process leading to ventricular dilatation involves specific compensatory rearrangements in the border zone adjacent to the infarct, which isolates the intact myocardium from inflammation at the scar edge. Using a rat model, we examined ultrastructural changes in the intact and border zones of post-infarction myocardium at chronic stages. Morphometric analysis of myofibrils, mitochondria, and excitation-contraction coupling structures revealed similar remodeling processes in both zones at 2 weeks post-infarction, characterized by decreased myofibril density, reduced mitochondrial area and volume density, and shortened contacts between T-tubules and sarcoplasmic reticulum. At 26 weeks post-infarction, during the dilated cardiomyopathy phase, we observed distinct compensatory changes in the border zone. Specifically, there was a loose arrangement of myofibrils and an increased volume fraction of mitochondria. These differences in remodeling between the intact and border zones highlight factors contributing to ventricular dilatation and help the development of new therapeutic strategies to delay heart failure progression in cardiac ischemia.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrastructural Remodeling of Cardiomyocytes in Postinfarction Myocardium of Rats in the Late Stages of the Disease.\",\"authors\":\"Sergei A Fedotov, Andrei V Stepanov, Galina A Sakuta, Ivan S Andreev, Marina S Ivanova, Ekaterina V Baidyuk\",\"doi\":\"10.1002/cyto.a.24915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying factors that contribute to the transition to the dilated phase in cardiac ischemia is a critical challenge in heart failure treatment. Currently, no effective therapies exist for this ischemic complication, and the mechanisms driving left ventricular dilatation during chronic post-infarction remodeling remain poorly understood. One potential pathological process leading to ventricular dilatation involves specific compensatory rearrangements in the border zone adjacent to the infarct, which isolates the intact myocardium from inflammation at the scar edge. Using a rat model, we examined ultrastructural changes in the intact and border zones of post-infarction myocardium at chronic stages. Morphometric analysis of myofibrils, mitochondria, and excitation-contraction coupling structures revealed similar remodeling processes in both zones at 2 weeks post-infarction, characterized by decreased myofibril density, reduced mitochondrial area and volume density, and shortened contacts between T-tubules and sarcoplasmic reticulum. At 26 weeks post-infarction, during the dilated cardiomyopathy phase, we observed distinct compensatory changes in the border zone. Specifically, there was a loose arrangement of myofibrils and an increased volume fraction of mitochondria. These differences in remodeling between the intact and border zones highlight factors contributing to ventricular dilatation and help the development of new therapeutic strategies to delay heart failure progression in cardiac ischemia.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cyto.a.24915\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24915","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Ultrastructural Remodeling of Cardiomyocytes in Postinfarction Myocardium of Rats in the Late Stages of the Disease.
Identifying factors that contribute to the transition to the dilated phase in cardiac ischemia is a critical challenge in heart failure treatment. Currently, no effective therapies exist for this ischemic complication, and the mechanisms driving left ventricular dilatation during chronic post-infarction remodeling remain poorly understood. One potential pathological process leading to ventricular dilatation involves specific compensatory rearrangements in the border zone adjacent to the infarct, which isolates the intact myocardium from inflammation at the scar edge. Using a rat model, we examined ultrastructural changes in the intact and border zones of post-infarction myocardium at chronic stages. Morphometric analysis of myofibrils, mitochondria, and excitation-contraction coupling structures revealed similar remodeling processes in both zones at 2 weeks post-infarction, characterized by decreased myofibril density, reduced mitochondrial area and volume density, and shortened contacts between T-tubules and sarcoplasmic reticulum. At 26 weeks post-infarction, during the dilated cardiomyopathy phase, we observed distinct compensatory changes in the border zone. Specifically, there was a loose arrangement of myofibrils and an increased volume fraction of mitochondria. These differences in remodeling between the intact and border zones highlight factors contributing to ventricular dilatation and help the development of new therapeutic strategies to delay heart failure progression in cardiac ischemia.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.