Stefan Pieter Hendrik van den Berg, Adja Zoumaro-Djayoon, Flora Yang, Gregory Bokinsky
{"title":"外源脂肪酸通过与内源性底物竞争大肠杆菌的磷脂合成来抑制脂肪酸的合成。","authors":"Stefan Pieter Hendrik van den Berg, Adja Zoumaro-Djayoon, Flora Yang, Gregory Bokinsky","doi":"10.1002/1873-3468.15092","DOIUrl":null,"url":null,"abstract":"<p><p>Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation. Accumulation of long-chain acyl-ACP is caused by competition with acyl-CoA for phospholipid synthesis enzymes. Furthermore, we find that transcriptional regulation rebalances saturated and unsaturated acyl-ACP while maintaining overall expression levels of fatty acid synthesis enzymes. Rapid feedback inhibition of fatty acid synthesis by exogenous fatty acids thus allows E. coli to benefit from exogenous fatty acids while maintaining fatty acid synthesis capacity. We hypothesize that this indirect feedback mechanism is ubiquitous across bacterial species.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous fatty acids inhibit fatty acid synthesis by competing with endogenously generated substrates for phospholipid synthesis in Escherichia coli.\",\"authors\":\"Stefan Pieter Hendrik van den Berg, Adja Zoumaro-Djayoon, Flora Yang, Gregory Bokinsky\",\"doi\":\"10.1002/1873-3468.15092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation. Accumulation of long-chain acyl-ACP is caused by competition with acyl-CoA for phospholipid synthesis enzymes. Furthermore, we find that transcriptional regulation rebalances saturated and unsaturated acyl-ACP while maintaining overall expression levels of fatty acid synthesis enzymes. Rapid feedback inhibition of fatty acid synthesis by exogenous fatty acids thus allows E. coli to benefit from exogenous fatty acids while maintaining fatty acid synthesis capacity. We hypothesize that this indirect feedback mechanism is ubiquitous across bacterial species.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.15092\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15092","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Exogenous fatty acids inhibit fatty acid synthesis by competing with endogenously generated substrates for phospholipid synthesis in Escherichia coli.
Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation. Accumulation of long-chain acyl-ACP is caused by competition with acyl-CoA for phospholipid synthesis enzymes. Furthermore, we find that transcriptional regulation rebalances saturated and unsaturated acyl-ACP while maintaining overall expression levels of fatty acid synthesis enzymes. Rapid feedback inhibition of fatty acid synthesis by exogenous fatty acids thus allows E. coli to benefit from exogenous fatty acids while maintaining fatty acid synthesis capacity. We hypothesize that this indirect feedback mechanism is ubiquitous across bacterial species.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.