基于电力安全可控性的电力通信设备自愈技术的实现与研究

Q2 Energy Energy Informatics Pub Date : 2025-01-02 DOI:10.1186/s42162-024-00460-x
Danni Liu, Song Zhang, Shengda Wang, Mingwei Zhou, Ji Du
{"title":"基于电力安全可控性的电力通信设备自愈技术的实现与研究","authors":"Danni Liu,&nbsp;Song Zhang,&nbsp;Shengda Wang,&nbsp;Mingwei Zhou,&nbsp;Ji Du","doi":"10.1186/s42162-024-00460-x","DOIUrl":null,"url":null,"abstract":"<div><p>The reliability of power communication networks is vital to ensure uninterrupted operation in power electronics. Self-healing techniques address this need by automating fault identification and recovery. However, existing methods struggle with dynamic challenges like voltage fluctuations, thermal overloads, and multidimensional sensor data, often leading to delays in fault recovery and reduced safety. This study aims to develop the Self Heal Power Safe Predictor (SHPSP) model to overcome the limitations of prior self-healing techniques. The primary objectives include improving fault prediction accuracy, enhancing recovery speed, and ensuring resilience under diverse and high-stress operational conditions. The SHPSP model employs an ensemble-based classification strategy within a majority voting framework, focusing on multidimensional sensor data such as voltage, temperature, and safety indicators. Feature selection is optimized using ensembled filter and wrapper techniques to prioritize critical parameters. The model is validated against conventional methods using metrics like accuracy, precision, recall, F1-score, and MCC. Experimental results demonstrate that the SHPSP model significantly outperforms previous approaches, achieving higher fault detection accuracy and faster recovery, particularly during voltage drops, power surges, and thermal stress. The SHPSP classifier obtained 91.4% accuracy, 88.2% precision, 89.5% recall, 89.8% F1-score, 81.0% MCC, and a 92.0% ROC-AUC curve. The SHPSP model ensures enhanced safety, dependability, and robustness for power electronics systems, marking a significant advancement in self-healing technology.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00460-x","citationCount":"0","resultStr":"{\"title\":\"Realization and research of self-healing technology of power communication equipment based on power safety and controllability\",\"authors\":\"Danni Liu,&nbsp;Song Zhang,&nbsp;Shengda Wang,&nbsp;Mingwei Zhou,&nbsp;Ji Du\",\"doi\":\"10.1186/s42162-024-00460-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reliability of power communication networks is vital to ensure uninterrupted operation in power electronics. Self-healing techniques address this need by automating fault identification and recovery. However, existing methods struggle with dynamic challenges like voltage fluctuations, thermal overloads, and multidimensional sensor data, often leading to delays in fault recovery and reduced safety. This study aims to develop the Self Heal Power Safe Predictor (SHPSP) model to overcome the limitations of prior self-healing techniques. The primary objectives include improving fault prediction accuracy, enhancing recovery speed, and ensuring resilience under diverse and high-stress operational conditions. The SHPSP model employs an ensemble-based classification strategy within a majority voting framework, focusing on multidimensional sensor data such as voltage, temperature, and safety indicators. Feature selection is optimized using ensembled filter and wrapper techniques to prioritize critical parameters. The model is validated against conventional methods using metrics like accuracy, precision, recall, F1-score, and MCC. Experimental results demonstrate that the SHPSP model significantly outperforms previous approaches, achieving higher fault detection accuracy and faster recovery, particularly during voltage drops, power surges, and thermal stress. The SHPSP classifier obtained 91.4% accuracy, 88.2% precision, 89.5% recall, 89.8% F1-score, 81.0% MCC, and a 92.0% ROC-AUC curve. The SHPSP model ensures enhanced safety, dependability, and robustness for power electronics systems, marking a significant advancement in self-healing technology.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00460-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00460-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00460-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

电力通信网络的可靠性对于保证电力电子设备的不间断运行至关重要。自我修复技术通过自动化故障识别和恢复来满足这一需求。然而,现有的方法与电压波动、热过载和多维传感器数据等动态挑战作斗争,往往导致故障恢复延迟和安全性降低。本研究旨在建立自愈能力安全预测器(SHPSP)模型,以克服先前自愈技术的局限性。主要目标包括提高故障预测精度,提高恢复速度,确保在各种高应力工况下的恢复能力。SHPSP模型在多数投票框架内采用基于集成的分类策略,重点关注多维传感器数据,如电压、温度和安全指标。使用集成滤波器和包装技术优化特征选择,以确定关键参数的优先级。该模型使用准确性、精密度、召回率、f1分数和MCC等指标对传统方法进行验证。实验结果表明,SHPSP模型明显优于以往的方法,具有更高的故障检测精度和更快的恢复速度,特别是在电压下降、功率浪涌和热应力情况下。SHPSP分类器准确率为91.4%,精密度为88.2%,召回率为89.5%,f1评分为89.8%,MCC为81.0%,ROC-AUC曲线为92.0%。SHPSP模型确保了电力电子系统的安全性、可靠性和鲁棒性,标志着自修复技术的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realization and research of self-healing technology of power communication equipment based on power safety and controllability

The reliability of power communication networks is vital to ensure uninterrupted operation in power electronics. Self-healing techniques address this need by automating fault identification and recovery. However, existing methods struggle with dynamic challenges like voltage fluctuations, thermal overloads, and multidimensional sensor data, often leading to delays in fault recovery and reduced safety. This study aims to develop the Self Heal Power Safe Predictor (SHPSP) model to overcome the limitations of prior self-healing techniques. The primary objectives include improving fault prediction accuracy, enhancing recovery speed, and ensuring resilience under diverse and high-stress operational conditions. The SHPSP model employs an ensemble-based classification strategy within a majority voting framework, focusing on multidimensional sensor data such as voltage, temperature, and safety indicators. Feature selection is optimized using ensembled filter and wrapper techniques to prioritize critical parameters. The model is validated against conventional methods using metrics like accuracy, precision, recall, F1-score, and MCC. Experimental results demonstrate that the SHPSP model significantly outperforms previous approaches, achieving higher fault detection accuracy and faster recovery, particularly during voltage drops, power surges, and thermal stress. The SHPSP classifier obtained 91.4% accuracy, 88.2% precision, 89.5% recall, 89.8% F1-score, 81.0% MCC, and a 92.0% ROC-AUC curve. The SHPSP model ensures enhanced safety, dependability, and robustness for power electronics systems, marking a significant advancement in self-healing technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1