Peixin Han
(, ), Zhanyu Li
(, ), Yonghui Zhang
(, ), Xiaoming Zhou
(, ), Dongwei Wang
(, ), Kai Zhang
(, )
{"title":"基于亥姆霍兹谐振器的宽带可调谐声学超表面","authors":"Peixin Han \n (, ), Zhanyu Li \n (, ), Yonghui Zhang \n (, ), Xiaoming Zhou \n (, ), Dongwei Wang \n (, ), Kai Zhang \n (, )","doi":"10.1007/s10409-024-24531-x","DOIUrl":null,"url":null,"abstract":"<div><p>A broadband tunable acoustic metasurface (BTAM) is conceived with Helmholtz resonators (HRs). The tunability of HRs’ neck enables precise control over the phase shift of the unit cell. Through careful arrangement of unit cells, the BTAMs are engineered to exhibit various phase differences, thereby inducing anomalous reflections and acoustic focusing. Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range. Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface. This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband tunable acoustic metasurface based on Helmholtz resonators\",\"authors\":\"Peixin Han \\n (, ), Zhanyu Li \\n (, ), Yonghui Zhang \\n (, ), Xiaoming Zhou \\n (, ), Dongwei Wang \\n (, ), Kai Zhang \\n (, )\",\"doi\":\"10.1007/s10409-024-24531-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A broadband tunable acoustic metasurface (BTAM) is conceived with Helmholtz resonators (HRs). The tunability of HRs’ neck enables precise control over the phase shift of the unit cell. Through careful arrangement of unit cells, the BTAMs are engineered to exhibit various phase differences, thereby inducing anomalous reflections and acoustic focusing. Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range. Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface. This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.</p></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24531-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24531-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Broadband tunable acoustic metasurface based on Helmholtz resonators
A broadband tunable acoustic metasurface (BTAM) is conceived with Helmholtz resonators (HRs). The tunability of HRs’ neck enables precise control over the phase shift of the unit cell. Through careful arrangement of unit cells, the BTAMs are engineered to exhibit various phase differences, thereby inducing anomalous reflections and acoustic focusing. Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range. Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface. This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics