前瞻性碰撞预警如何降低主车驾驶员的碰撞风险。

IF 5.7 1区 工程技术 Q1 ERGONOMICS Accident; analysis and prevention Pub Date : 2025-03-01 Epub Date: 2024-12-31 DOI:10.1016/j.aap.2024.107891
Qiang Fu, Xiaohua Zhao, Chen Chen, Wenhao Ren
{"title":"前瞻性碰撞预警如何降低主车驾驶员的碰撞风险。","authors":"Qiang Fu, Xiaohua Zhao, Chen Chen, Wenhao Ren","doi":"10.1016/j.aap.2024.107891","DOIUrl":null,"url":null,"abstract":"<p><p>Mixed platoon with a human-driven leading vehicle may be a transition mode prior to the widespread adoption of fully autonomous platoon. Enhancing the driving safety of the leading vehicle driver is crucial for improving the overall operational safety of the mixed platoon. Predictive-Forward-Collision-Warning (PFCW), an emerging technology in transportation, holds promise in mitigating collision risks for drivers by presenting traffic information beyond their immediate visual range. However, the influence characteristics of this function and how it influences the evolution of collision risk in leading vehicle driver remain unclear. Therefore, this paper attempts to analyse the quantitative impact of PFCW on the collision risk of leading vehicle driver. A test platform for connected mixed platoon was built utilizing driving simulation technology, alongside the development of a connected Human-Machine Interface (HMI) incorporating PFCW functionality. To evaluate the longitudinal collision risk of leading vehicle driver, a time-frequency analysis method was employed, focusing on key indicators: deceleration rate to avoid collision (DRAC), time to collision (TTC), and proportion of stopping distance (PSD). The time-domain analysis results indicated that PFCW can significantly mitigate the collision risk of leading vehicle. Wavelet transform results demonstrated that PFCW can ameliorate drivers' abnormal driving behavior and mitigate the collision risk in emergency situation of impending collision moment. Meanwhile, PFCW can enhance the overall operation safety of the mixed platoon. This paper leverages driving simulation technology and multidimensional indicators to analyze the quantitative impact of PFCW on the collision risk of leading vehicle driver during rapid deceleration of preceding vehicles. The findings can guide the development of test standards for connected mixed platoon, the promotion and application of PFCW, and the advancement of Navigate on Autopilot (NOA). Additionally, the test platform and framework developed in this study can accommodate various experimental needs for connected mixed platoon testing.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107891"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How predictive-forward-collision-warning reduces the collision risk of leading vehicle driver.\",\"authors\":\"Qiang Fu, Xiaohua Zhao, Chen Chen, Wenhao Ren\",\"doi\":\"10.1016/j.aap.2024.107891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mixed platoon with a human-driven leading vehicle may be a transition mode prior to the widespread adoption of fully autonomous platoon. Enhancing the driving safety of the leading vehicle driver is crucial for improving the overall operational safety of the mixed platoon. Predictive-Forward-Collision-Warning (PFCW), an emerging technology in transportation, holds promise in mitigating collision risks for drivers by presenting traffic information beyond their immediate visual range. However, the influence characteristics of this function and how it influences the evolution of collision risk in leading vehicle driver remain unclear. Therefore, this paper attempts to analyse the quantitative impact of PFCW on the collision risk of leading vehicle driver. A test platform for connected mixed platoon was built utilizing driving simulation technology, alongside the development of a connected Human-Machine Interface (HMI) incorporating PFCW functionality. To evaluate the longitudinal collision risk of leading vehicle driver, a time-frequency analysis method was employed, focusing on key indicators: deceleration rate to avoid collision (DRAC), time to collision (TTC), and proportion of stopping distance (PSD). The time-domain analysis results indicated that PFCW can significantly mitigate the collision risk of leading vehicle. Wavelet transform results demonstrated that PFCW can ameliorate drivers' abnormal driving behavior and mitigate the collision risk in emergency situation of impending collision moment. Meanwhile, PFCW can enhance the overall operation safety of the mixed platoon. This paper leverages driving simulation technology and multidimensional indicators to analyze the quantitative impact of PFCW on the collision risk of leading vehicle driver during rapid deceleration of preceding vehicles. The findings can guide the development of test standards for connected mixed platoon, the promotion and application of PFCW, and the advancement of Navigate on Autopilot (NOA). Additionally, the test platform and framework developed in this study can accommodate various experimental needs for connected mixed platoon testing.</p>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"211 \",\"pages\":\"107891\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aap.2024.107891\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.aap.2024.107891","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在完全自动驾驶排被广泛采用之前,由人类驾驶的领头车辆组成的混合排可能是一种过渡模式。提高领先车辆驾驶员的驾驶安全性对提高混合排整体运行安全性至关重要。预测-前方碰撞预警(PFCW)是一项新兴的交通技术,它可以向驾驶员提供超出其直接视觉范围的交通信息,从而降低碰撞风险。然而,该函数的影响特征以及如何影响主导车辆驾驶员的碰撞风险演变尚不清楚。因此,本文试图定量分析PFCW对主导车辆驾驶员碰撞风险的影响。利用驾驶模拟技术建立了连接混合排的测试平台,同时开发了包含PFCW功能的连接人机界面(HMI)。采用时频分析方法对主车驾驶员纵向碰撞风险进行评价,重点评价了主要指标:避免碰撞减速率(DRAC)、碰撞时间(TTC)和停车距离比例(PSD)。时域分析结果表明,PFCW能显著降低前车的碰撞风险。小波变换结果表明,在碰撞时刻即将来临的紧急情况下,PFCW能够改善驾驶员的异常驾驶行为,降低碰撞风险。同时,PFCW可以提高混合排的整体操作安全性。本文利用驾驶仿真技术和多维指标,定量分析了前车快速减速时PFCW对领车驾驶员碰撞风险的影响。研究结果对互联混合排测试标准的制定、PFCW的推广应用以及自动驾驶导航技术的发展具有指导意义。此外,本研究开发的测试平台和框架可以适应连接混合排测试的各种实验需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How predictive-forward-collision-warning reduces the collision risk of leading vehicle driver.

Mixed platoon with a human-driven leading vehicle may be a transition mode prior to the widespread adoption of fully autonomous platoon. Enhancing the driving safety of the leading vehicle driver is crucial for improving the overall operational safety of the mixed platoon. Predictive-Forward-Collision-Warning (PFCW), an emerging technology in transportation, holds promise in mitigating collision risks for drivers by presenting traffic information beyond their immediate visual range. However, the influence characteristics of this function and how it influences the evolution of collision risk in leading vehicle driver remain unclear. Therefore, this paper attempts to analyse the quantitative impact of PFCW on the collision risk of leading vehicle driver. A test platform for connected mixed platoon was built utilizing driving simulation technology, alongside the development of a connected Human-Machine Interface (HMI) incorporating PFCW functionality. To evaluate the longitudinal collision risk of leading vehicle driver, a time-frequency analysis method was employed, focusing on key indicators: deceleration rate to avoid collision (DRAC), time to collision (TTC), and proportion of stopping distance (PSD). The time-domain analysis results indicated that PFCW can significantly mitigate the collision risk of leading vehicle. Wavelet transform results demonstrated that PFCW can ameliorate drivers' abnormal driving behavior and mitigate the collision risk in emergency situation of impending collision moment. Meanwhile, PFCW can enhance the overall operation safety of the mixed platoon. This paper leverages driving simulation technology and multidimensional indicators to analyze the quantitative impact of PFCW on the collision risk of leading vehicle driver during rapid deceleration of preceding vehicles. The findings can guide the development of test standards for connected mixed platoon, the promotion and application of PFCW, and the advancement of Navigate on Autopilot (NOA). Additionally, the test platform and framework developed in this study can accommodate various experimental needs for connected mixed platoon testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.90
自引率
16.90%
发文量
264
审稿时长
48 days
期刊介绍: Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.
期刊最新文献
A game-theoretic driver steering model with individual risk perception field generation. Young Motorcyclists' Behavior Analysis in Pakistan based on Modified Motorcycle Rider Behavior Questionnaire (MRBQ). A discrete choice latent class method for capturing unobserved heterogeneity in cyclist crossing behaviour at crosswalks. Assessing e-scooter rider safety perceptions in shared spaces: Evidence from a video experiment in Sweden. Examining macro-level traffic crashes considering nonlinear and spatiotemporal spillover effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1