{"title":"一个框架,用于连续监测单个N-of-1试验,并将一系列连续监测的N-of-1试验的结果结合起来。","authors":"Subodh Selukar, David K Prince, Susanne May","doi":"10.1177/17407745241304284","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>N-of-1 trials compare two or more treatment options for a single participant. These trials have been used to study options for chronic conditions such as arthritis and attention deficit hyperactivity disorder. In addition, they have been suggested as a means to study interventions in rare populations that may not be tractable to include in standard clinical trials, such as treatment options for HIV-positive patients in need of organ transplant. Sequential monitoring of accruing data has been well-studied in traditional clinical trials, but these methods have not yet been implemented in N-of-1 trials. However, the option to validly stop an N-of-1 trial early could deliver faster decisions that could directly improve the patient's health.</p><p><strong>Methods: </strong>In this work, we propose and evaluate a framework to (1) facilitate sequential monitoring in individual N-of-1 trials with a continuous outcome and (2) combine results across a series of already-completed sequentially monitored N-of-1 trials. By employing the block structure common to N-of-1 trials, we suggest that existing approaches to sequential monitoring may be employed when data from one N-of-1 trial are analyzed with a linear mixed-effects model. To combine results across a series of already-completed sequentially monitored N-of-1 trials, we propose combining the naive estimates from constituent trials in a random-effects model with inverse-variance weighting. We evaluate these proposals via simulation.</p><p><strong>Results: </strong>We find that type 1 error can be substantially inflated for N-of-1 trials with a small number of planned blocks but can reach the nominal rate for trials with more planned blocks or those with larger numbers of periods per block or by using a <math><mrow><mi>t</mi></mrow></math>-value correction. For those settings with acceptable type 1 error, sequential monitoring results in similar power and on average earlier stopping compared with trials with no sequential monitoring. And, as expected, we find that including a larger number of constituent trials in a series reduces the mean-squared error of the combined point estimator.</p><p><strong>Conclusion: </strong>Under suitable design considerations, our proposed framework for sequential monitoring can support clinicians in providing important decisions earlier, on average, for patients engaged in N-of-1 trials.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"17407745241304284"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for sequential monitoring of individual N-of-1 trials and combining results across a series of sequentially monitored N-of-1 trials.\",\"authors\":\"Subodh Selukar, David K Prince, Susanne May\",\"doi\":\"10.1177/17407745241304284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>N-of-1 trials compare two or more treatment options for a single participant. These trials have been used to study options for chronic conditions such as arthritis and attention deficit hyperactivity disorder. In addition, they have been suggested as a means to study interventions in rare populations that may not be tractable to include in standard clinical trials, such as treatment options for HIV-positive patients in need of organ transplant. Sequential monitoring of accruing data has been well-studied in traditional clinical trials, but these methods have not yet been implemented in N-of-1 trials. However, the option to validly stop an N-of-1 trial early could deliver faster decisions that could directly improve the patient's health.</p><p><strong>Methods: </strong>In this work, we propose and evaluate a framework to (1) facilitate sequential monitoring in individual N-of-1 trials with a continuous outcome and (2) combine results across a series of already-completed sequentially monitored N-of-1 trials. By employing the block structure common to N-of-1 trials, we suggest that existing approaches to sequential monitoring may be employed when data from one N-of-1 trial are analyzed with a linear mixed-effects model. To combine results across a series of already-completed sequentially monitored N-of-1 trials, we propose combining the naive estimates from constituent trials in a random-effects model with inverse-variance weighting. We evaluate these proposals via simulation.</p><p><strong>Results: </strong>We find that type 1 error can be substantially inflated for N-of-1 trials with a small number of planned blocks but can reach the nominal rate for trials with more planned blocks or those with larger numbers of periods per block or by using a <math><mrow><mi>t</mi></mrow></math>-value correction. For those settings with acceptable type 1 error, sequential monitoring results in similar power and on average earlier stopping compared with trials with no sequential monitoring. And, as expected, we find that including a larger number of constituent trials in a series reduces the mean-squared error of the combined point estimator.</p><p><strong>Conclusion: </strong>Under suitable design considerations, our proposed framework for sequential monitoring can support clinicians in providing important decisions earlier, on average, for patients engaged in N-of-1 trials.</p>\",\"PeriodicalId\":10685,\"journal\":{\"name\":\"Clinical Trials\",\"volume\":\" \",\"pages\":\"17407745241304284\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Trials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17407745241304284\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Trials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17407745241304284","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
A framework for sequential monitoring of individual N-of-1 trials and combining results across a series of sequentially monitored N-of-1 trials.
Background: N-of-1 trials compare two or more treatment options for a single participant. These trials have been used to study options for chronic conditions such as arthritis and attention deficit hyperactivity disorder. In addition, they have been suggested as a means to study interventions in rare populations that may not be tractable to include in standard clinical trials, such as treatment options for HIV-positive patients in need of organ transplant. Sequential monitoring of accruing data has been well-studied in traditional clinical trials, but these methods have not yet been implemented in N-of-1 trials. However, the option to validly stop an N-of-1 trial early could deliver faster decisions that could directly improve the patient's health.
Methods: In this work, we propose and evaluate a framework to (1) facilitate sequential monitoring in individual N-of-1 trials with a continuous outcome and (2) combine results across a series of already-completed sequentially monitored N-of-1 trials. By employing the block structure common to N-of-1 trials, we suggest that existing approaches to sequential monitoring may be employed when data from one N-of-1 trial are analyzed with a linear mixed-effects model. To combine results across a series of already-completed sequentially monitored N-of-1 trials, we propose combining the naive estimates from constituent trials in a random-effects model with inverse-variance weighting. We evaluate these proposals via simulation.
Results: We find that type 1 error can be substantially inflated for N-of-1 trials with a small number of planned blocks but can reach the nominal rate for trials with more planned blocks or those with larger numbers of periods per block or by using a -value correction. For those settings with acceptable type 1 error, sequential monitoring results in similar power and on average earlier stopping compared with trials with no sequential monitoring. And, as expected, we find that including a larger number of constituent trials in a series reduces the mean-squared error of the combined point estimator.
Conclusion: Under suitable design considerations, our proposed framework for sequential monitoring can support clinicians in providing important decisions earlier, on average, for patients engaged in N-of-1 trials.
期刊介绍:
Clinical Trials is dedicated to advancing knowledge on the design and conduct of clinical trials related research methodologies. Covering the design, conduct, analysis, synthesis and evaluation of key methodologies, the journal remains on the cusp of the latest topics, including ethics, regulation and policy impact.