Vishnu Raman, Christopher L Hall, Victoria E Wetherby, Samantha A Whitney, Nele Van Dessel, Neil S Forbes
{"title":"在临床相关ΔsseJ沙门氏菌菌株中使用主调节剂flhDC控制细胞内蛋白递送,肿瘤定植和组织分布。","authors":"Vishnu Raman, Christopher L Hall, Victoria E Wetherby, Samantha A Whitney, Nele Van Dessel, Neil S Forbes","doi":"10.1016/j.ymthe.2024.12.038","DOIUrl":null,"url":null,"abstract":"<p><p>Effectively targeting intracellular pathways in cancers requires a system that specifically delivers to tumors and internalizes into cancer cells. To achieve this goal, we developed intracellular-delivering (ID) Salmonella with controllable expression of flhDC to regulate flagella production and cell invasion. We hypothesized that controlling flhDC would overcome the poor colonization seen in prior clinical trials. To test this hypothesis, we incorporated the aspirin-responsive Psal promoter and tuned flhDC expression with ssra degradation tags. In tumor-bearing mice, controlling flhDC increased protein release, tissue dispersion, and tumor colonization more than 10 million times. We discovered that inducing flhDC increases escape from intracellular vacuoles; however, deleting sseJ prevented escape and further increased protein delivery. Delivering constitutively active caspase-3 with ID-f-s Salmonella (ΔsseJ and induced Psal-flhDC) induced cell death in pancreatic, breast, and liver cancer cells and reduced the growth of breast tumors. This clinically ready strain preferentially colonized metastatic breast tissue 280 and 800 times more than surrounding healthy tissue in the lung and liver, respectively. By precisely controlling tumor colonization and cell invasion, this strain overcomes critical limitations of bacterial therapy and will enable treatment of many hard-to-treat cancers.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"649-669"},"PeriodicalIF":12.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Controlling intracellular protein delivery, tumor colonization and tissue distribution using flhDC in clinically relevant ΔsseJ Salmonella.\",\"authors\":\"Vishnu Raman, Christopher L Hall, Victoria E Wetherby, Samantha A Whitney, Nele Van Dessel, Neil S Forbes\",\"doi\":\"10.1016/j.ymthe.2024.12.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effectively targeting intracellular pathways in cancers requires a system that specifically delivers to tumors and internalizes into cancer cells. To achieve this goal, we developed intracellular-delivering (ID) Salmonella with controllable expression of flhDC to regulate flagella production and cell invasion. We hypothesized that controlling flhDC would overcome the poor colonization seen in prior clinical trials. To test this hypothesis, we incorporated the aspirin-responsive Psal promoter and tuned flhDC expression with ssra degradation tags. In tumor-bearing mice, controlling flhDC increased protein release, tissue dispersion, and tumor colonization more than 10 million times. We discovered that inducing flhDC increases escape from intracellular vacuoles; however, deleting sseJ prevented escape and further increased protein delivery. Delivering constitutively active caspase-3 with ID-f-s Salmonella (ΔsseJ and induced Psal-flhDC) induced cell death in pancreatic, breast, and liver cancer cells and reduced the growth of breast tumors. This clinically ready strain preferentially colonized metastatic breast tissue 280 and 800 times more than surrounding healthy tissue in the lung and liver, respectively. By precisely controlling tumor colonization and cell invasion, this strain overcomes critical limitations of bacterial therapy and will enable treatment of many hard-to-treat cancers.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"649-669\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.12.038\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.12.038","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Controlling intracellular protein delivery, tumor colonization and tissue distribution using flhDC in clinically relevant ΔsseJ Salmonella.
Effectively targeting intracellular pathways in cancers requires a system that specifically delivers to tumors and internalizes into cancer cells. To achieve this goal, we developed intracellular-delivering (ID) Salmonella with controllable expression of flhDC to regulate flagella production and cell invasion. We hypothesized that controlling flhDC would overcome the poor colonization seen in prior clinical trials. To test this hypothesis, we incorporated the aspirin-responsive Psal promoter and tuned flhDC expression with ssra degradation tags. In tumor-bearing mice, controlling flhDC increased protein release, tissue dispersion, and tumor colonization more than 10 million times. We discovered that inducing flhDC increases escape from intracellular vacuoles; however, deleting sseJ prevented escape and further increased protein delivery. Delivering constitutively active caspase-3 with ID-f-s Salmonella (ΔsseJ and induced Psal-flhDC) induced cell death in pancreatic, breast, and liver cancer cells and reduced the growth of breast tumors. This clinically ready strain preferentially colonized metastatic breast tissue 280 and 800 times more than surrounding healthy tissue in the lung and liver, respectively. By precisely controlling tumor colonization and cell invasion, this strain overcomes critical limitations of bacterial therapy and will enable treatment of many hard-to-treat cancers.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.