David J Young, Abigail J Edwards, Kevin G Quiroz Caceda, Ella Liberzon, Johana Barrientos, So Gun Hong, Jacob Turner, Peter L Choyke, Sean Arlauckas, Adam S Lazorchak, Richard A Morgan, Noriko Sato, Cynthia E Dunbar
{"title":"在非人类灵长类动物模型中,用PET对离体产生的89Zr-oxine标记浆细胞进行体内跟踪。","authors":"David J Young, Abigail J Edwards, Kevin G Quiroz Caceda, Ella Liberzon, Johana Barrientos, So Gun Hong, Jacob Turner, Peter L Choyke, Sean Arlauckas, Adam S Lazorchak, Richard A Morgan, Noriko Sato, Cynthia E Dunbar","doi":"10.1016/j.ymthe.2024.12.042","DOIUrl":null,"url":null,"abstract":"<p><p>B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody-secreting cells. Zirconium-89-oxine-labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 h of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting possibly a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo tracking of ex-vivo-generated <sup>89</sup>Zr-oxine-labeled plasma cells by PET in a non-human primate model.\",\"authors\":\"David J Young, Abigail J Edwards, Kevin G Quiroz Caceda, Ella Liberzon, Johana Barrientos, So Gun Hong, Jacob Turner, Peter L Choyke, Sean Arlauckas, Adam S Lazorchak, Richard A Morgan, Noriko Sato, Cynthia E Dunbar\",\"doi\":\"10.1016/j.ymthe.2024.12.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody-secreting cells. Zirconium-89-oxine-labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 h of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting possibly a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.12.042\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.12.042","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
In vivo tracking of ex-vivo-generated 89Zr-oxine-labeled plasma cells by PET in a non-human primate model.
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody-secreting cells. Zirconium-89-oxine-labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 h of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting possibly a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.