Hongbin Zhang, Jin Zhang, Xuan Zhong, Ya Feng, Guangli Li, Xiong Li, Jingqin Lv, Donghong Ji
{"title":"基于多尺度语义挖掘和微小细节增强网络的视网膜血管分割","authors":"Hongbin Zhang, Jin Zhang, Xuan Zhong, Ya Feng, Guangli Li, Xiong Li, Jingqin Lv, Donghong Ji","doi":"10.1007/s40747-024-01714-7","DOIUrl":null,"url":null,"abstract":"<p>Retinal image segmentation is crucial for the early diagnosis of some diseases like diabetes and hypertension. Current methods face many challenges, such as inadequate multi-scale semantics and insufficient global information. In view of this, we propose a network called multi-scale semantics mining and tiny details enhancement (MSM-TDE). First, a multi-scale feature input module is designed to capture multi-scale semantics information from the source. Then a fresh multi-scale attention guidance module is constructed to mine local multi-scale semantics while a global semantics enhancement module is proposed to extract global multi-scale semantics. Additionally, an auxiliary vessel detail enhancement branch using dynamic snake convolution is built to enhance the tiny vessel details. Extensive experimental results on four public datasets validate the superiority of MSM-TDE, which obtains competitive performance with satisfactory model complexity. Notably, this study provides an innovative idea of multi-scale semantics mining by diverse methods.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"70 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSM-TDE: multi-scale semantics mining and tiny details enhancement network for retinal vessel segmentation\",\"authors\":\"Hongbin Zhang, Jin Zhang, Xuan Zhong, Ya Feng, Guangli Li, Xiong Li, Jingqin Lv, Donghong Ji\",\"doi\":\"10.1007/s40747-024-01714-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Retinal image segmentation is crucial for the early diagnosis of some diseases like diabetes and hypertension. Current methods face many challenges, such as inadequate multi-scale semantics and insufficient global information. In view of this, we propose a network called multi-scale semantics mining and tiny details enhancement (MSM-TDE). First, a multi-scale feature input module is designed to capture multi-scale semantics information from the source. Then a fresh multi-scale attention guidance module is constructed to mine local multi-scale semantics while a global semantics enhancement module is proposed to extract global multi-scale semantics. Additionally, an auxiliary vessel detail enhancement branch using dynamic snake convolution is built to enhance the tiny vessel details. Extensive experimental results on four public datasets validate the superiority of MSM-TDE, which obtains competitive performance with satisfactory model complexity. Notably, this study provides an innovative idea of multi-scale semantics mining by diverse methods.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01714-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01714-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MSM-TDE: multi-scale semantics mining and tiny details enhancement network for retinal vessel segmentation
Retinal image segmentation is crucial for the early diagnosis of some diseases like diabetes and hypertension. Current methods face many challenges, such as inadequate multi-scale semantics and insufficient global information. In view of this, we propose a network called multi-scale semantics mining and tiny details enhancement (MSM-TDE). First, a multi-scale feature input module is designed to capture multi-scale semantics information from the source. Then a fresh multi-scale attention guidance module is constructed to mine local multi-scale semantics while a global semantics enhancement module is proposed to extract global multi-scale semantics. Additionally, an auxiliary vessel detail enhancement branch using dynamic snake convolution is built to enhance the tiny vessel details. Extensive experimental results on four public datasets validate the superiority of MSM-TDE, which obtains competitive performance with satisfactory model complexity. Notably, this study provides an innovative idea of multi-scale semantics mining by diverse methods.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.