聚合物纳米载体的环境和人类风险评估:当前分析挑战和有前途的方法综述

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Science: Nano Pub Date : 2025-01-02 DOI:10.1039/D4EN01033G
Dona Manayath, Jadranka Travas-Sejdic, Erin M. Leitao and Melanie Kah
{"title":"聚合物纳米载体的环境和人类风险评估:当前分析挑战和有前途的方法综述","authors":"Dona Manayath, Jadranka Travas-Sejdic, Erin M. Leitao and Melanie Kah","doi":"10.1039/D4EN01033G","DOIUrl":null,"url":null,"abstract":"<p >Polymer nanocarriers (PNCs) are designed to deliver active ingredients in pharmaceuticals, food science and agricultural applications and it is essential to ensure their safety towards environmental and human health. Most research and guidance documents on the fate and effect of nanoparticles primarily focus on metal and metal oxide nanomaterials, while nanosafety research on organic nanomaterials is still in the early stages. This review aims to address a set of critical questions that currently prevent the risk assessment of PNCs. Our focus is on the analytical challenges associated with the detection, quantification and characterisation of PNCs in environmental and biological matrices. By addressing the key questions related to the durability, degradability and biological barrier-crossing properties of PNCs, we critically assess the analytical techniques used across different sectors. Our goal is to highlight the strengths and limitations of these analytical methods for the risk assessment of PNCs and to emphasize the significant overlap in the applications of PNCs across various sectors. We also discuss the urgent need for further research to scientifically advance analytical strategies for PNCs, which are essential for supporting responsible innovation in nanotechnology, ensuring the safety of both human and environmental health.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 2","pages":" 1079-1106"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental and human risk assessment of polymer nanocarriers: a review on current analytical challenges and promising approaches\",\"authors\":\"Dona Manayath, Jadranka Travas-Sejdic, Erin M. Leitao and Melanie Kah\",\"doi\":\"10.1039/D4EN01033G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymer nanocarriers (PNCs) are designed to deliver active ingredients in pharmaceuticals, food science and agricultural applications and it is essential to ensure their safety towards environmental and human health. Most research and guidance documents on the fate and effect of nanoparticles primarily focus on metal and metal oxide nanomaterials, while nanosafety research on organic nanomaterials is still in the early stages. This review aims to address a set of critical questions that currently prevent the risk assessment of PNCs. Our focus is on the analytical challenges associated with the detection, quantification and characterisation of PNCs in environmental and biological matrices. By addressing the key questions related to the durability, degradability and biological barrier-crossing properties of PNCs, we critically assess the analytical techniques used across different sectors. Our goal is to highlight the strengths and limitations of these analytical methods for the risk assessment of PNCs and to emphasize the significant overlap in the applications of PNCs across various sectors. We also discuss the urgent need for further research to scientifically advance analytical strategies for PNCs, which are essential for supporting responsible innovation in nanotechnology, ensuring the safety of both human and environmental health.</p>\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\" 2\",\"pages\":\" 1079-1106\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/en/d4en01033g\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/en/d4en01033g","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物纳米载体(pnc)被设计用于在制药、食品科学和农业应用中提供活性成分,并且确保其对环境和人类健康的安全性至关重要。大多数关于纳米颗粒命运和影响的研究和指导文件主要集中在金属和金属氧化物纳米材料上,而有机纳米材料的纳米安全性研究仍处于早期阶段。本综述旨在解决目前阻碍pnc风险评估的一系列关键问题。我们的重点是与环境和生物基质中pnc的检测,定量和表征相关的分析挑战。通过解决与pnc的耐久性、可降解性和生物屏障穿越特性相关的关键问题,我们批判性地评估了不同部门使用的分析技术。我们的目标是强调这些分析方法用于pnc风险评估的优势和局限性,并强调pnc在各个部门应用中的重要重叠。我们还讨论了进一步研究以科学地推进pnc分析战略的迫切需要,这对于支持纳米技术的负责任创新、确保人类和环境健康的安全至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental and human risk assessment of polymer nanocarriers: a review on current analytical challenges and promising approaches

Polymer nanocarriers (PNCs) are designed to deliver active ingredients in pharmaceuticals, food science and agricultural applications and it is essential to ensure their safety towards environmental and human health. Most research and guidance documents on the fate and effect of nanoparticles primarily focus on metal and metal oxide nanomaterials, while nanosafety research on organic nanomaterials is still in the early stages. This review aims to address a set of critical questions that currently prevent the risk assessment of PNCs. Our focus is on the analytical challenges associated with the detection, quantification and characterisation of PNCs in environmental and biological matrices. By addressing the key questions related to the durability, degradability and biological barrier-crossing properties of PNCs, we critically assess the analytical techniques used across different sectors. Our goal is to highlight the strengths and limitations of these analytical methods for the risk assessment of PNCs and to emphasize the significant overlap in the applications of PNCs across various sectors. We also discuss the urgent need for further research to scientifically advance analytical strategies for PNCs, which are essential for supporting responsible innovation in nanotechnology, ensuring the safety of both human and environmental health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
期刊最新文献
Effects of Ti3C2Tx (MXene) on growth, oxidative stress, and metabolism of Microcystis aeruginosa Cr(III)-incorporated Fe(III) hydroxides for enhanced redox conversion of As(III) and Cr(VI) in acidic solution Correction: Emerging investigator series: quantitative insights into the relationship between the concentrations and SERS intensities of neonicotinoids in water Recovery of Co(II), Ni(II) and Zn(II) using magnetic nanoparticles (MNPs) at circumneutral pH Chemical heterogeneity observed in the development of photo-oxidized PET micro- and nanoparticle weathered controls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1