岩质水源集水区降雨径流模拟预测泥石流发生

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2025-01-03 DOI:10.1029/2023wr036887
Martino Bernard, Matteo Barbini, Matteo Berti, Mauro Boreggio, Alessandro Simoni, Carlo Gregoretti
{"title":"岩质水源集水区降雨径流模拟预测泥石流发生","authors":"Martino Bernard, Matteo Barbini, Matteo Berti, Mauro Boreggio, Alessandro Simoni, Carlo Gregoretti","doi":"10.1029/2023wr036887","DOIUrl":null,"url":null,"abstract":"In the Dolomites, steep rocky cliffs are marked by numerous narrow gullies. When high-intensity short-duration precipitation occurs, these gullies concentrate and direct surface runoff to the screes at the foot of rock cliffs. Surface runoff mixes with loose sediments, creating a solid-liquid surge that, as it moves downhill, increases its volume entraining debris material and transforms into a granular debris flow. Given the ongoing challenge of modeling the relationship between intense rainfall, surface runoff, and debris flow initiation, we take advantage of data from three monitoring stations operating in distinct debris flow active catchments in our study area to make progress. These stations, strategically positioned close to debris flows initiation zones, record videos and different types of flow-stage data, helping us pinpoint the timing and form of incoming discharge hydrographs. Over a 15-year period of observation, we collected a comprehensive data set on runoff and mass movement in these catchments, offering valuable insights into their hydrological behavior and the initiation of granular debris flows. To compute infiltration excess runoff generation, we refined an already existing hydrological model and calibrated it using discharge measured at one of the monitoring stations. Testing this updated model against observations from two other larger debris flow sites showed that it can reproduce the initial phases of a debris flow, when sediment concentration rapidly rises. These findings suggest that a well-tuned hydrological model can predict the discharge from intense, short rainfall events that typically trigger debris flows, as well as the early stages of these phenomena.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"6 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall-Runoff Modeling in Rocky Headwater Catchments for the Prediction of Debris Flow Occurrence\",\"authors\":\"Martino Bernard, Matteo Barbini, Matteo Berti, Mauro Boreggio, Alessandro Simoni, Carlo Gregoretti\",\"doi\":\"10.1029/2023wr036887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Dolomites, steep rocky cliffs are marked by numerous narrow gullies. When high-intensity short-duration precipitation occurs, these gullies concentrate and direct surface runoff to the screes at the foot of rock cliffs. Surface runoff mixes with loose sediments, creating a solid-liquid surge that, as it moves downhill, increases its volume entraining debris material and transforms into a granular debris flow. Given the ongoing challenge of modeling the relationship between intense rainfall, surface runoff, and debris flow initiation, we take advantage of data from three monitoring stations operating in distinct debris flow active catchments in our study area to make progress. These stations, strategically positioned close to debris flows initiation zones, record videos and different types of flow-stage data, helping us pinpoint the timing and form of incoming discharge hydrographs. Over a 15-year period of observation, we collected a comprehensive data set on runoff and mass movement in these catchments, offering valuable insights into their hydrological behavior and the initiation of granular debris flows. To compute infiltration excess runoff generation, we refined an already existing hydrological model and calibrated it using discharge measured at one of the monitoring stations. Testing this updated model against observations from two other larger debris flow sites showed that it can reproduce the initial phases of a debris flow, when sediment concentration rapidly rises. These findings suggest that a well-tuned hydrological model can predict the discharge from intense, short rainfall events that typically trigger debris flows, as well as the early stages of these phenomena.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036887\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036887","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在白云石山脉,陡峭的岩石悬崖上有许多狭窄的沟壑。当高强度的短时间降水发生时,这些沟渠集中并将地表径流引导到岩石悬崖脚下的碎石上。地表径流与松散的沉积物混合,形成一种固体-液体的涌流,当它向下坡移动时,增加了携带碎屑物质的体积,并转化为粒状泥石流。考虑到对强降雨、地表径流和泥石流发生之间关系建模的持续挑战,我们利用了研究区域内不同泥石流活动集水区三个监测站的数据来取得进展。这些站策略性地靠近泥石流起爆区,记录视频和不同类型的流级数据,帮助我们精确确定流入流量的时间和形式。在15年的观察期间,我们收集了这些流域径流和质量运动的综合数据集,为其水文行为和粒状泥石流的开始提供了有价值的见解。为了计算入渗过量径流的产生,我们改进了现有的水文模型,并使用其中一个监测站测量的流量对其进行了校准。将这个更新的模型与另外两个更大的泥石流地点的观测结果进行对比,结果表明它可以重现泥石流的初始阶段,即沉积物浓度迅速上升的阶段。这些发现表明,一个调整良好的水文模型可以预测通常引发泥石流的强烈、短暂降雨事件的流量,以及这些现象的早期阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rainfall-Runoff Modeling in Rocky Headwater Catchments for the Prediction of Debris Flow Occurrence
In the Dolomites, steep rocky cliffs are marked by numerous narrow gullies. When high-intensity short-duration precipitation occurs, these gullies concentrate and direct surface runoff to the screes at the foot of rock cliffs. Surface runoff mixes with loose sediments, creating a solid-liquid surge that, as it moves downhill, increases its volume entraining debris material and transforms into a granular debris flow. Given the ongoing challenge of modeling the relationship between intense rainfall, surface runoff, and debris flow initiation, we take advantage of data from three monitoring stations operating in distinct debris flow active catchments in our study area to make progress. These stations, strategically positioned close to debris flows initiation zones, record videos and different types of flow-stage data, helping us pinpoint the timing and form of incoming discharge hydrographs. Over a 15-year period of observation, we collected a comprehensive data set on runoff and mass movement in these catchments, offering valuable insights into their hydrological behavior and the initiation of granular debris flows. To compute infiltration excess runoff generation, we refined an already existing hydrological model and calibrated it using discharge measured at one of the monitoring stations. Testing this updated model against observations from two other larger debris flow sites showed that it can reproduce the initial phases of a debris flow, when sediment concentration rapidly rises. These findings suggest that a well-tuned hydrological model can predict the discharge from intense, short rainfall events that typically trigger debris flows, as well as the early stages of these phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
Unraveling the Distinct Roles of Snowmelt and Glacier-Melt on Agricultural Water Availability: A Novel Indicator and Its Application in a Glacierized Basin of China’s Arid Region Machine Learning Prediction of Tritium-Helium Groundwater Ages in the Central Valley, California, USA Control of Groundwater-Lake Interaction Zone Structure on Spatial Variability of Lacustrine Groundwater Discharge in Oxbow Lake A Cluster-Based Data Assimilation Approach to Generate New Daily Gridded Time Series Precipitation Data in the Himalayan River Basins Physics-Guided Deep Learning Model for Daily Groundwater Table Maps Estimation Using Passive Surface-Wave Dispersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1