{"title":"基于交互注意机制的工程图关联推理","authors":"Xu Xuesong, Xiao Gang, Sun Li, Zhang Xia, Wu Peixi, Zhang Yuanming, Cheng Zhenbo","doi":"10.1016/j.autcon.2024.105942","DOIUrl":null,"url":null,"abstract":"In infrastructure construction, engineering drawings combine graphic and textual information, with text playing a critical role in retrieving and measuring the similarity of these drawings in practical applications. However, existing research primarily focuses on graphics, neglecting the extraction and semantic representation of text. Existing Optical Character Recognition (OCR)-based methods face challenges in clustering text into coherent semantic modules, frequently dispersing related text across different regions. Therefore, this paper proposes a deep learning framework for the semantic extraction of text from engineering drawings. By integrating textual, positional, and image features, this framework enables semantic extraction and represents engineering drawings as knowledge graphs. An interactive attention-based approach is employed for associative retrieval of engineering drawings via subgraph matching. Evaluation on datasets from a transportation design institute and public sources demonstrates the framework's effectiveness in both semantic extraction and relational reasoning.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"2019 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associative reasoning for engineering drawings using an interactive attention mechanism\",\"authors\":\"Xu Xuesong, Xiao Gang, Sun Li, Zhang Xia, Wu Peixi, Zhang Yuanming, Cheng Zhenbo\",\"doi\":\"10.1016/j.autcon.2024.105942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In infrastructure construction, engineering drawings combine graphic and textual information, with text playing a critical role in retrieving and measuring the similarity of these drawings in practical applications. However, existing research primarily focuses on graphics, neglecting the extraction and semantic representation of text. Existing Optical Character Recognition (OCR)-based methods face challenges in clustering text into coherent semantic modules, frequently dispersing related text across different regions. Therefore, this paper proposes a deep learning framework for the semantic extraction of text from engineering drawings. By integrating textual, positional, and image features, this framework enables semantic extraction and represents engineering drawings as knowledge graphs. An interactive attention-based approach is employed for associative retrieval of engineering drawings via subgraph matching. Evaluation on datasets from a transportation design institute and public sources demonstrates the framework's effectiveness in both semantic extraction and relational reasoning.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"2019 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105942\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105942","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Associative reasoning for engineering drawings using an interactive attention mechanism
In infrastructure construction, engineering drawings combine graphic and textual information, with text playing a critical role in retrieving and measuring the similarity of these drawings in practical applications. However, existing research primarily focuses on graphics, neglecting the extraction and semantic representation of text. Existing Optical Character Recognition (OCR)-based methods face challenges in clustering text into coherent semantic modules, frequently dispersing related text across different regions. Therefore, this paper proposes a deep learning framework for the semantic extraction of text from engineering drawings. By integrating textual, positional, and image features, this framework enables semantic extraction and represents engineering drawings as knowledge graphs. An interactive attention-based approach is employed for associative retrieval of engineering drawings via subgraph matching. Evaluation on datasets from a transportation design institute and public sources demonstrates the framework's effectiveness in both semantic extraction and relational reasoning.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.