n型三阳离子铅基钙钛矿场效应晶体管的热退火诱导相变。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-02-05 Epub Date: 2025-01-03 DOI:10.1021/acsami.4c17017
Taehyun Kong, Yongjin Kim, Jaeyoon Cho, Hyeonmin Choi, Youcheng Zhang, Heebeom Ahn, Jaeyong Woo, Dohyun Kim, Jeongjae Lee, Henning Sirringhaus, Takhee Lee, Keehoon Kang
{"title":"n型三阳离子铅基钙钛矿场效应晶体管的热退火诱导相变。","authors":"Taehyun Kong, Yongjin Kim, Jaeyoon Cho, Hyeonmin Choi, Youcheng Zhang, Heebeom Ahn, Jaeyong Woo, Dohyun Kim, Jeongjae Lee, Henning Sirringhaus, Takhee Lee, Keehoon Kang","doi":"10.1021/acsami.4c17017","DOIUrl":null,"url":null,"abstract":"<p><p>The field of perovskite optoelectronics and electronics has rapidly advanced, driven by excellent material properties and a diverse range of fabrication methods available. Among them, triple-cation perovskites such as CsFAMAPbI<sub>3</sub> offer enhanced stability and superior performance, making them ideal candidates for advanced applications. However, the multicomponent nature of these perovskites introduces complexity, particularly in how their structural, optical, and electrical properties are influenced by thermal annealing─a critical step for achieving high-quality thin films. Here, we propose a comprehensive mechanistic picture of the thin film formation process of CsFAMAPbI<sub>3</sub> during the thermal annealing step through systematic and comparative analyses, identifying two key thermally induced phase transitions: the crystallization of the perovskite phase facilitated by solvent evaporation and the formation of the PbI<sub>2</sub> phase due to thermal decomposition. Our results reveal that the crystallization process during annealing proceeds from the surface to the bulk of the films, with a significant impact on the film's morphology and optical characteristics. Controlled annealing enhances field-effect transistor device performance by promoting defect passivation and complete perovskite crystallization, while prolonged annealing leads to excessive PbI<sub>2</sub> formation, accelerating ion migration and ultimately degrading device performance. These insights offer valuable guidance for optimizing the design and performance of perovskite-based electronic and optoelectronic devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"8501-8512"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Annealing-Induced Phase Conversion in N-type Triple-Cation Lead-Based Perovskite Field Effect Transistors.\",\"authors\":\"Taehyun Kong, Yongjin Kim, Jaeyoon Cho, Hyeonmin Choi, Youcheng Zhang, Heebeom Ahn, Jaeyong Woo, Dohyun Kim, Jeongjae Lee, Henning Sirringhaus, Takhee Lee, Keehoon Kang\",\"doi\":\"10.1021/acsami.4c17017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field of perovskite optoelectronics and electronics has rapidly advanced, driven by excellent material properties and a diverse range of fabrication methods available. Among them, triple-cation perovskites such as CsFAMAPbI<sub>3</sub> offer enhanced stability and superior performance, making them ideal candidates for advanced applications. However, the multicomponent nature of these perovskites introduces complexity, particularly in how their structural, optical, and electrical properties are influenced by thermal annealing─a critical step for achieving high-quality thin films. Here, we propose a comprehensive mechanistic picture of the thin film formation process of CsFAMAPbI<sub>3</sub> during the thermal annealing step through systematic and comparative analyses, identifying two key thermally induced phase transitions: the crystallization of the perovskite phase facilitated by solvent evaporation and the formation of the PbI<sub>2</sub> phase due to thermal decomposition. Our results reveal that the crystallization process during annealing proceeds from the surface to the bulk of the films, with a significant impact on the film's morphology and optical characteristics. Controlled annealing enhances field-effect transistor device performance by promoting defect passivation and complete perovskite crystallization, while prolonged annealing leads to excessive PbI<sub>2</sub> formation, accelerating ion migration and ultimately degrading device performance. These insights offer valuable guidance for optimizing the design and performance of perovskite-based electronic and optoelectronic devices.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"8501-8512\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17017\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17017","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在卓越的材料特性和多种制造方法的推动下,包晶光电子学和电子学领域发展迅速。其中,CsFAMAPbI3 等三阳离子包晶具有更高的稳定性和更优越的性能,是先进应用的理想候选材料。然而,这些包晶石的多组分性质带来了复杂性,尤其是热退火如何影响它们的结构、光学和电学特性--这是实现高质量薄膜的关键步骤。在这里,我们通过系统和比较分析,提出了 CsFAMAPbI3 在热退火步骤中薄膜形成过程的全面机理,确定了两个关键的热诱导相变:溶剂蒸发促进的包晶相结晶和热分解导致的 PbI2 相的形成。我们的研究结果表明,退火过程中的结晶过程会从薄膜的表面延伸到薄膜的主体,对薄膜的形态和光学特性产生重大影响。受控退火可促进缺陷钝化和包晶完全结晶,从而提高场效应晶体管器件的性能,而长时间退火则会导致过量 PbI2 的形成,加速离子迁移,最终降低器件性能。这些见解为优化基于包晶石的电子和光电器件的设计和性能提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Annealing-Induced Phase Conversion in N-type Triple-Cation Lead-Based Perovskite Field Effect Transistors.

The field of perovskite optoelectronics and electronics has rapidly advanced, driven by excellent material properties and a diverse range of fabrication methods available. Among them, triple-cation perovskites such as CsFAMAPbI3 offer enhanced stability and superior performance, making them ideal candidates for advanced applications. However, the multicomponent nature of these perovskites introduces complexity, particularly in how their structural, optical, and electrical properties are influenced by thermal annealing─a critical step for achieving high-quality thin films. Here, we propose a comprehensive mechanistic picture of the thin film formation process of CsFAMAPbI3 during the thermal annealing step through systematic and comparative analyses, identifying two key thermally induced phase transitions: the crystallization of the perovskite phase facilitated by solvent evaporation and the formation of the PbI2 phase due to thermal decomposition. Our results reveal that the crystallization process during annealing proceeds from the surface to the bulk of the films, with a significant impact on the film's morphology and optical characteristics. Controlled annealing enhances field-effect transistor device performance by promoting defect passivation and complete perovskite crystallization, while prolonged annealing leads to excessive PbI2 formation, accelerating ion migration and ultimately degrading device performance. These insights offer valuable guidance for optimizing the design and performance of perovskite-based electronic and optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased Hysteresis Benefited from Enhanced Lattice Oxygen and Promoted Band Alignment with Electron Transport Layer Modification in Perovskite Solar Cells Reinforcement of Carbazole-Based Self-Assembled Monolayers in Inverted Perovskite Solar Cells Fundamentals and Perspectives of Positively Charged Single-Metal Site Catalysts for CO2 Electroreduction Novel Polymer Gel Lubricant Functionalized with a Phosphate Anion for Friction Reduction and Film Thickness Enhancement in Multiple Lubrication Conditions Observation of Out-of-Plane Antidamping Torque at the Platinum/Permalloy Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1