配偶对测序使鉴定和描述平衡和不平衡的结构变异产前细胞基因组诊断。

IF 7.1 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY Clinical chemistry Pub Date : 2025-01-03 DOI:10.1093/clinchem/hvae146
Jicheng Qian, Huilin Wang, Hailei Liang, Yuting Zheng, Mingyang Yu, Wing Ting Tse, Angel Hoi Wan Kwan, Lo Wong, Natalie Kwun Long Wong, Isabella Yi Man Wah, So Ling Lau, Shuk Yi Annie Hui, Matthew Hoi Kin Chau, Xiaoyan Chen, Rui Zhang, Liona C Poon, Tak Yeung Leung, Pengfei Liu, Kwong Wai Choy, Zirui Dong
{"title":"配偶对测序使鉴定和描述平衡和不平衡的结构变异产前细胞基因组诊断。","authors":"Jicheng Qian, Huilin Wang, Hailei Liang, Yuting Zheng, Mingyang Yu, Wing Ting Tse, Angel Hoi Wan Kwan, Lo Wong, Natalie Kwun Long Wong, Isabella Yi Man Wah, So Ling Lau, Shuk Yi Annie Hui, Matthew Hoi Kin Chau, Xiaoyan Chen, Rui Zhang, Liona C Poon, Tak Yeung Leung, Pengfei Liu, Kwong Wai Choy, Zirui Dong","doi":"10.1093/clinchem/hvae146","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mate-pair sequencing detects both balanced and unbalanced structural variants (SVs) and simultaneously informs in relation to both genomic location and orientation of SVs for enhanced variant classification and clinical interpretation, while chromosomal microarray analysis (CMA) only reports deletion/duplication. Herein, we evaluated its diagnostic utility in a prospective back-to-back prenatal comparative study with CMA.</p><p><strong>Methods: </strong>From October 2021 to September 2023, 426 fetuses with ultrasound anomalies were prospectively recruited for mate-pair sequencing and CMA in parallel for prenatal genetic diagnosis. Balanced/unbalanced SVs and regions with absence of heterozygosity (AOH) were detected and classified independently, and comparisons were made between mate-pair sequencing and CMA to assess concordance. In addition, novel SVs were investigated for potential RNA perturbations using cultured cells, whenever available.</p><p><strong>Results: </strong>Mate-pair sequencing and CMA successfully yielded results for all 426 fetuses without the need for cell culturing. In addition, mate-pair sequencing identified 19 cases with aneuploidies, 16 cases with pathogenic simple deletions/duplications, and 5 cases with pathogenic translocations/insertions, providing a 25% incremental diagnostic yield compared to CMA (9.4%, 40/426 vs 7.6%, 32/426). Furthermore, by identifying the location and orientation of SVs, mate-pair sequencing improved the variant interpretation and/or follow-up approach for 40.0% (12) of the 30 cases with likely clinically significant deletions/duplications reported by CMA. Lastly, both platforms reported 3 cases (3/426) with multiple regions of AOH likely attributable to parental consanguinity.</p><p><strong>Conclusions: </strong>Mate-pair sequencing detects additional balanced/unbalanced SVs and improves variant interpretation in comparison to CMA, indicating its potential to serve as a comprehensive prenatal cytogenomic diagnostic method.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"155-168"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mate-Pair Sequencing Enables Identification and Delineation of Balanced and Unbalanced Structural Variants in Prenatal Cytogenomic Diagnostics.\",\"authors\":\"Jicheng Qian, Huilin Wang, Hailei Liang, Yuting Zheng, Mingyang Yu, Wing Ting Tse, Angel Hoi Wan Kwan, Lo Wong, Natalie Kwun Long Wong, Isabella Yi Man Wah, So Ling Lau, Shuk Yi Annie Hui, Matthew Hoi Kin Chau, Xiaoyan Chen, Rui Zhang, Liona C Poon, Tak Yeung Leung, Pengfei Liu, Kwong Wai Choy, Zirui Dong\",\"doi\":\"10.1093/clinchem/hvae146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mate-pair sequencing detects both balanced and unbalanced structural variants (SVs) and simultaneously informs in relation to both genomic location and orientation of SVs for enhanced variant classification and clinical interpretation, while chromosomal microarray analysis (CMA) only reports deletion/duplication. Herein, we evaluated its diagnostic utility in a prospective back-to-back prenatal comparative study with CMA.</p><p><strong>Methods: </strong>From October 2021 to September 2023, 426 fetuses with ultrasound anomalies were prospectively recruited for mate-pair sequencing and CMA in parallel for prenatal genetic diagnosis. Balanced/unbalanced SVs and regions with absence of heterozygosity (AOH) were detected and classified independently, and comparisons were made between mate-pair sequencing and CMA to assess concordance. In addition, novel SVs were investigated for potential RNA perturbations using cultured cells, whenever available.</p><p><strong>Results: </strong>Mate-pair sequencing and CMA successfully yielded results for all 426 fetuses without the need for cell culturing. In addition, mate-pair sequencing identified 19 cases with aneuploidies, 16 cases with pathogenic simple deletions/duplications, and 5 cases with pathogenic translocations/insertions, providing a 25% incremental diagnostic yield compared to CMA (9.4%, 40/426 vs 7.6%, 32/426). Furthermore, by identifying the location and orientation of SVs, mate-pair sequencing improved the variant interpretation and/or follow-up approach for 40.0% (12) of the 30 cases with likely clinically significant deletions/duplications reported by CMA. Lastly, both platforms reported 3 cases (3/426) with multiple regions of AOH likely attributable to parental consanguinity.</p><p><strong>Conclusions: </strong>Mate-pair sequencing detects additional balanced/unbalanced SVs and improves variant interpretation in comparison to CMA, indicating its potential to serve as a comprehensive prenatal cytogenomic diagnostic method.</p>\",\"PeriodicalId\":10690,\"journal\":{\"name\":\"Clinical chemistry\",\"volume\":\"71 1\",\"pages\":\"155-168\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/clinchem/hvae146\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:配对测序检测平衡和不平衡结构变异(SVs),同时告知SVs的基因组位置和方向,以增强变异分类和临床解释,而染色体微阵列分析(CMA)仅报告缺失/重复。在此,我们评估其诊断效用在前瞻性背靠背产前比较研究与CMA。方法:从2021年10月至2023年9月,前瞻性招募426例超声异常胎儿进行配对测序和CMA并行产前遗传诊断。独立检测平衡/不平衡SVs和缺乏杂合性(AOH)区域,并将配对测序与CMA进行比较以评估一致性。此外,在可用的情况下,利用培养细胞研究了新型sv的潜在RNA扰动。结果:配偶对测序和CMA在不需要细胞培养的情况下成功地获得了所有426个胎儿的结果。此外,配对测序鉴定出19例非整倍体,16例致病性简单缺失/重复,5例致病性易位/插入,与CMA相比,诊断率增加了25% (9.4%,40/426 vs 7.6%, 32/426)。此外,通过确定sv的位置和取向,配对测序改善了CMA报告的30例可能存在临床显著缺失/重复的病例中40.0%(12例)的变异解释和/或随访方法。最后,两个平台都报告了3例(3/426)可能归因于父母血缘关系的AOH的多个区域。结论:与CMA相比,配偶对测序检测到额外的平衡/不平衡sv,并改善了变异解释,表明其有潜力作为全面的产前细胞基因组诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mate-Pair Sequencing Enables Identification and Delineation of Balanced and Unbalanced Structural Variants in Prenatal Cytogenomic Diagnostics.

Background: Mate-pair sequencing detects both balanced and unbalanced structural variants (SVs) and simultaneously informs in relation to both genomic location and orientation of SVs for enhanced variant classification and clinical interpretation, while chromosomal microarray analysis (CMA) only reports deletion/duplication. Herein, we evaluated its diagnostic utility in a prospective back-to-back prenatal comparative study with CMA.

Methods: From October 2021 to September 2023, 426 fetuses with ultrasound anomalies were prospectively recruited for mate-pair sequencing and CMA in parallel for prenatal genetic diagnosis. Balanced/unbalanced SVs and regions with absence of heterozygosity (AOH) were detected and classified independently, and comparisons were made between mate-pair sequencing and CMA to assess concordance. In addition, novel SVs were investigated for potential RNA perturbations using cultured cells, whenever available.

Results: Mate-pair sequencing and CMA successfully yielded results for all 426 fetuses without the need for cell culturing. In addition, mate-pair sequencing identified 19 cases with aneuploidies, 16 cases with pathogenic simple deletions/duplications, and 5 cases with pathogenic translocations/insertions, providing a 25% incremental diagnostic yield compared to CMA (9.4%, 40/426 vs 7.6%, 32/426). Furthermore, by identifying the location and orientation of SVs, mate-pair sequencing improved the variant interpretation and/or follow-up approach for 40.0% (12) of the 30 cases with likely clinically significant deletions/duplications reported by CMA. Lastly, both platforms reported 3 cases (3/426) with multiple regions of AOH likely attributable to parental consanguinity.

Conclusions: Mate-pair sequencing detects additional balanced/unbalanced SVs and improves variant interpretation in comparison to CMA, indicating its potential to serve as a comprehensive prenatal cytogenomic diagnostic method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical chemistry
Clinical chemistry 医学-医学实验技术
CiteScore
11.30
自引率
4.30%
发文量
212
审稿时长
1.7 months
期刊介绍: Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM). The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics. In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology. The journal is indexed in databases such as MEDLINE and Web of Science.
期刊最新文献
Reflecting on 70 Years of Clinical Chemistry. Robust Diagnosis of Acute Bacterial and Viral Infections via Host Gene Expression Rank-Based Ensemble Machine Learning Algorithm: A Multi-Cohort Model Development and Validation Study. How Can Digital PCR Support the Rapid Development of New Detection Tests in Future Pandemics? A Multianalyte Machine Learning Model to Detect Wrong Blood in Complete Blood Count Tube Errors in a Pediatric Setting Structural Variation Interpretation in the Genome Sequencing Era: Lessons from Cytogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1