Daniel J M Crouch, Jamie R J Inshaw, Catherine C Robertson, Esther Ng, Jia-Yuan Zhang, Wei-Min Chen, Suna Onengut-Gumuscu, Antony J Cutler, Carlo Sidore, Francesco Cucca, Flemming Pociot, Patrick Concannon, Stephen S Rich, John A Todd
{"title":"常见疾病遗传风险变异的贝叶斯效应大小排序用于后续研究。","authors":"Daniel J M Crouch, Jamie R J Inshaw, Catherine C Robertson, Esther Ng, Jia-Yuan Zhang, Wei-Min Chen, Suna Onengut-Gumuscu, Antony J Cutler, Carlo Sidore, Francesco Cucca, Flemming Pociot, Patrick Concannon, Stephen S Rich, John A Todd","doi":"10.1002/gepi.22608","DOIUrl":null,"url":null,"abstract":"<p><p>Biological datasets often consist of thousands or millions of variables, e.g. genetic variants or biomarkers, and when sample sizes are large it is common to find many associated with an outcome of interest, for example, disease risk in a GWAS, at high levels of statistical significance, but with very small effects. The False Discovery Rate (FDR) is used to identify effects of interest based on ranking variables according to their statistical significance. Here, we develop a complementary measure to the FDR, the priorityFDR, that ranks variables by a combination of effect size and significance, allowing further prioritisation among a set of variables that pass a significance or FDR threshold. Applying to the largest GWAS of type 1 diabetes to date (15,573 cases and 158,408 controls), we identified 26 independent genetic associations, including two newly-reported loci, with qualitatively lower priorityFDRs than the remaining 175 signals. We detected putatively causal type 1 diabetes risk genes using Mendelian Randomisation, and found that these were located disproportionately close to low priorityFDR signals (p = 0.005), as were genes in the IL-2 pathway (p = 0.003). Selecting variables on both effect size and significance can lead to improved prioritisation for mechanistic follow-up studies from genetic and other large biological datasets.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":"e22608"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696485/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian Effect Size Ranking to Prioritise Genetic Risk Variants in Common Diseases for Follow-Up Studies.\",\"authors\":\"Daniel J M Crouch, Jamie R J Inshaw, Catherine C Robertson, Esther Ng, Jia-Yuan Zhang, Wei-Min Chen, Suna Onengut-Gumuscu, Antony J Cutler, Carlo Sidore, Francesco Cucca, Flemming Pociot, Patrick Concannon, Stephen S Rich, John A Todd\",\"doi\":\"10.1002/gepi.22608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological datasets often consist of thousands or millions of variables, e.g. genetic variants or biomarkers, and when sample sizes are large it is common to find many associated with an outcome of interest, for example, disease risk in a GWAS, at high levels of statistical significance, but with very small effects. The False Discovery Rate (FDR) is used to identify effects of interest based on ranking variables according to their statistical significance. Here, we develop a complementary measure to the FDR, the priorityFDR, that ranks variables by a combination of effect size and significance, allowing further prioritisation among a set of variables that pass a significance or FDR threshold. Applying to the largest GWAS of type 1 diabetes to date (15,573 cases and 158,408 controls), we identified 26 independent genetic associations, including two newly-reported loci, with qualitatively lower priorityFDRs than the remaining 175 signals. We detected putatively causal type 1 diabetes risk genes using Mendelian Randomisation, and found that these were located disproportionately close to low priorityFDR signals (p = 0.005), as were genes in the IL-2 pathway (p = 0.003). Selecting variables on both effect size and significance can lead to improved prioritisation for mechanistic follow-up studies from genetic and other large biological datasets.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"e22608\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696485/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/gepi.22608\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/gepi.22608","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Bayesian Effect Size Ranking to Prioritise Genetic Risk Variants in Common Diseases for Follow-Up Studies.
Biological datasets often consist of thousands or millions of variables, e.g. genetic variants or biomarkers, and when sample sizes are large it is common to find many associated with an outcome of interest, for example, disease risk in a GWAS, at high levels of statistical significance, but with very small effects. The False Discovery Rate (FDR) is used to identify effects of interest based on ranking variables according to their statistical significance. Here, we develop a complementary measure to the FDR, the priorityFDR, that ranks variables by a combination of effect size and significance, allowing further prioritisation among a set of variables that pass a significance or FDR threshold. Applying to the largest GWAS of type 1 diabetes to date (15,573 cases and 158,408 controls), we identified 26 independent genetic associations, including two newly-reported loci, with qualitatively lower priorityFDRs than the remaining 175 signals. We detected putatively causal type 1 diabetes risk genes using Mendelian Randomisation, and found that these were located disproportionately close to low priorityFDR signals (p = 0.005), as were genes in the IL-2 pathway (p = 0.003). Selecting variables on both effect size and significance can lead to improved prioritisation for mechanistic follow-up studies from genetic and other large biological datasets.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.