{"title":"用包含半定矩阵约束的方法逼近m -矩阵学习有向无环图","authors":"Suliman Al-Homidan","doi":"10.1007/s13369-024-09492-7","DOIUrl":null,"url":null,"abstract":"<div><p>The task of deducing directed acyclic graphs from observational data has gained significant attention recently due to its broad applicability. Consequently, connecting the log-det characterization domain with the set of M-matrices defined over the cone of positive definite matrices has emerged as a crucial approach in this field. However, experimentally collected data often deviates from the expected positive semidefinite structure due to introduced noise, posing a challenge in maintaining its physical structure. In this paper, we address this challenge by proposing four methods to reconstruct the initial matrix while maintaining its physical structure. Leveraging advanced techniques, including sequential quadratic programming (SQP), we minimize the impact of noise, ensuring the recovery of the reconstructed matrix. We provide a rigorous proof of convergence for the SQP method, highlighting its effectiveness in achieving reliable reconstructions. Through comparative numerical analyses, we demonstrate the effectiveness of our methods in preserving the original structure of the initial matrix, even in the presence of noise.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 2","pages":"1329 - 1337"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating M-matrix in Learning Directed Acyclic Graphs Using Methods Involve Semidefinite Matrix Constraints\",\"authors\":\"Suliman Al-Homidan\",\"doi\":\"10.1007/s13369-024-09492-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The task of deducing directed acyclic graphs from observational data has gained significant attention recently due to its broad applicability. Consequently, connecting the log-det characterization domain with the set of M-matrices defined over the cone of positive definite matrices has emerged as a crucial approach in this field. However, experimentally collected data often deviates from the expected positive semidefinite structure due to introduced noise, posing a challenge in maintaining its physical structure. In this paper, we address this challenge by proposing four methods to reconstruct the initial matrix while maintaining its physical structure. Leveraging advanced techniques, including sequential quadratic programming (SQP), we minimize the impact of noise, ensuring the recovery of the reconstructed matrix. We provide a rigorous proof of convergence for the SQP method, highlighting its effectiveness in achieving reliable reconstructions. Through comparative numerical analyses, we demonstrate the effectiveness of our methods in preserving the original structure of the initial matrix, even in the presence of noise.</p></div>\",\"PeriodicalId\":54354,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"50 2\",\"pages\":\"1329 - 1337\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13369-024-09492-7\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09492-7","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Approximating M-matrix in Learning Directed Acyclic Graphs Using Methods Involve Semidefinite Matrix Constraints
The task of deducing directed acyclic graphs from observational data has gained significant attention recently due to its broad applicability. Consequently, connecting the log-det characterization domain with the set of M-matrices defined over the cone of positive definite matrices has emerged as a crucial approach in this field. However, experimentally collected data often deviates from the expected positive semidefinite structure due to introduced noise, posing a challenge in maintaining its physical structure. In this paper, we address this challenge by proposing four methods to reconstruct the initial matrix while maintaining its physical structure. Leveraging advanced techniques, including sequential quadratic programming (SQP), we minimize the impact of noise, ensuring the recovery of the reconstructed matrix. We provide a rigorous proof of convergence for the SQP method, highlighting its effectiveness in achieving reliable reconstructions. Through comparative numerical analyses, we demonstrate the effectiveness of our methods in preserving the original structure of the initial matrix, even in the presence of noise.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.