{"title":"仿生壳聚糖/聚多巴胺纳米颗粒吸附剂珠:一种从各种样品基质中分离和高效液相色谱分析四环素类抗生素的通用平台。","authors":"Emmanuvel Arputharaj, Yu-Hui Huang, Shivangi Singh, Chen-Han Zhuang, Kuei-Ying Lin, Sri Sudewi, You-Rong Wu, Yeou-Lih Huang","doi":"10.38212/2224-6614.3510","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties. The proposed method demonstrated substantial analytical robustness, enabling the sorbent bead to detect low concentrations of TCs, with limit of detection values ranging from 142 to 303 μg L-1. Notably, the established linear range of 450-2000 μg L-1 extended the applicability of this approach to food and pharmaceutical product analysis. This study anticipated a paradigm shift in sample pre-treatment methodologies for TC analysis and envisions CS/Fe@PDA beads as a valuable tool for further advancements in separation science. The proposed bio-sorbent introduced a promising avenue for optimizing TC analysis, contributing to broader goals of food safety and pharmaceutical quality assurance. The results and insights from this study are expected to provide valuable inputs for ongoing efforts of the Food and Drug Administration to enhance analytical methodologies for food and drug safety.</p>","PeriodicalId":358,"journal":{"name":"Journal of Food and Drug Analysis","volume":"32 4","pages":"520-531"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698588/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired chitosan/polydopamine-nanoparticle based sorbent bead: A versatile platform for separation and HPLC analysis of tetracycline antibiotics from various sample matrix.\",\"authors\":\"Emmanuvel Arputharaj, Yu-Hui Huang, Shivangi Singh, Chen-Han Zhuang, Kuei-Ying Lin, Sri Sudewi, You-Rong Wu, Yeou-Lih Huang\",\"doi\":\"10.38212/2224-6614.3510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties. The proposed method demonstrated substantial analytical robustness, enabling the sorbent bead to detect low concentrations of TCs, with limit of detection values ranging from 142 to 303 μg L-1. Notably, the established linear range of 450-2000 μg L-1 extended the applicability of this approach to food and pharmaceutical product analysis. This study anticipated a paradigm shift in sample pre-treatment methodologies for TC analysis and envisions CS/Fe@PDA beads as a valuable tool for further advancements in separation science. The proposed bio-sorbent introduced a promising avenue for optimizing TC analysis, contributing to broader goals of food safety and pharmaceutical quality assurance. The results and insights from this study are expected to provide valuable inputs for ongoing efforts of the Food and Drug Administration to enhance analytical methodologies for food and drug safety.</p>\",\"PeriodicalId\":358,\"journal\":{\"name\":\"Journal of Food and Drug Analysis\",\"volume\":\"32 4\",\"pages\":\"520-531\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698588/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food and Drug Analysis\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.38212/2224-6614.3510\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food and Drug Analysis","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.38212/2224-6614.3510","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Bio-inspired chitosan/polydopamine-nanoparticle based sorbent bead: A versatile platform for separation and HPLC analysis of tetracycline antibiotics from various sample matrix.
This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties. The proposed method demonstrated substantial analytical robustness, enabling the sorbent bead to detect low concentrations of TCs, with limit of detection values ranging from 142 to 303 μg L-1. Notably, the established linear range of 450-2000 μg L-1 extended the applicability of this approach to food and pharmaceutical product analysis. This study anticipated a paradigm shift in sample pre-treatment methodologies for TC analysis and envisions CS/Fe@PDA beads as a valuable tool for further advancements in separation science. The proposed bio-sorbent introduced a promising avenue for optimizing TC analysis, contributing to broader goals of food safety and pharmaceutical quality assurance. The results and insights from this study are expected to provide valuable inputs for ongoing efforts of the Food and Drug Administration to enhance analytical methodologies for food and drug safety.
期刊介绍:
The journal aims to provide an international platform for scientists, researchers and academicians to promote, share and discuss new findings, current issues, and developments in the different areas of food and drug analysis.
The scope of the Journal includes analytical methodologies and biological activities in relation to food, drugs, cosmetics and traditional Chinese medicine, as well as related disciplines of topical interest to public health professionals.