一种超快时间分辨相干拉曼光谱的超快算法。

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2025-01-04 DOI:10.1038/s42004-024-01397-8
Francesco Mazza, Dirk van den Bekerom
{"title":"一种超快时间分辨相干拉曼光谱的超快算法。","authors":"Francesco Mazza, Dirk van den Bekerom","doi":"10.1038/s42004-024-01397-8","DOIUrl":null,"url":null,"abstract":"<p><p>Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis. Here, we present an algorithm that achieves a million-fold improvement in computation time compared to existing methods. The algorithm demonstrates remarkable accuracy, with an approximation error below 0.1% across all tested probe delays, at both room temperature (296 K) and elevated temperatures (1500 K). This result could greatly expand the application of time-resolved CRS, particularly in plasma research, as well as in broader atmospheric and astrophysical sciences.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"3"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.\",\"authors\":\"Francesco Mazza, Dirk van den Bekerom\",\"doi\":\"10.1038/s42004-024-01397-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis. Here, we present an algorithm that achieves a million-fold improvement in computation time compared to existing methods. The algorithm demonstrates remarkable accuracy, with an approximation error below 0.1% across all tested probe delays, at both room temperature (296 K) and elevated temperatures (1500 K). This result could greatly expand the application of time-resolved CRS, particularly in plasma research, as well as in broader atmospheric and astrophysical sciences.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"3\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-024-01397-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-024-01397-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

时间分辨相干拉曼光谱(CRS)是一种强大的非线性光学技术,用于化学反应流的定量、原位分析,提供无与伦比的精度和卓越的时空分辨率。它在大型多原子分子中的应用,对于理解反应动力学至关重要,迄今为止,由于其旋转-振动拉曼光谱的复杂性而受到限制。为这些分子开发全面的光谱代码是一个长期的目标,但由于其光谱合成所需的计算时间太长而受到阻碍。在这里,我们提出了一种算法,与现有方法相比,它在计算时间上实现了百万倍的改进。在室温(296 K)和高温(1500 K)下,该算法显示出显著的准确性,在所有测试的探针延迟中,近似误差低于0.1%。这一结果可以极大地扩展时间分辨CRS的应用,特别是在等离子体研究以及更广泛的大气和天体物理科学方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis. Here, we present an algorithm that achieves a million-fold improvement in computation time compared to existing methods. The algorithm demonstrates remarkable accuracy, with an approximation error below 0.1% across all tested probe delays, at both room temperature (296 K) and elevated temperatures (1500 K). This result could greatly expand the application of time-resolved CRS, particularly in plasma research, as well as in broader atmospheric and astrophysical sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Chemical reactivity of RNA and its modifications with hydrazine. Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy. Spin-state effect on the efficiency of a post-synthetic modification reaction on a spin crossover complex. Women in chemistry: Q&A with Dr Qi Hao. Women in chemistry: Q&A with Professor Mónica H. Pérez-Temprano.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1