{"title":"藏红花素和没食子酸通过抑制ROS形成和抑制胰腺线粒体肿胀来减弱乙醇诱导的线粒体功能障碍。","authors":"Ahmad Salimi, Saleh Khezri, Mojtaba Amani, Niknaz Badrinezhad, Sahar Hosseiny, Reza Saadati","doi":"10.1007/s11010-024-05180-0","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage. Intact mitochondria are isolated from pancreas by differential centrifugation and directly treated with toxic concentrations of ethanol (8% v/v) in the presence of different concentrations crocin/gallic acid/L-alliin (100, 500, and 1000 µM). Biomarkers of mitochondrial toxicity including the succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial swelling, lipid peroxidation, and glutathione content were assessed. The results showed that 8% v/v ethanol-treated rat pancreas-isolated mitochondria for 1 h resulted in a significant decrease of SDH activity to 81.34 ± 3.48%, a significant increase of ROS formation, MDA content, mitochondrial swelling, and collapse of MMP. Among three tested natural compounds, treatment with crocin and gallic acid significantly reversed the changes of the above indicators and resulted in the increase of SDH activity, improvement of MMP collapse and mitochondrial swelling, and reduction of ROS formation and oxidative stress in pancreas-isolated mitochondria. This study demonstrated that crocin and gallic acid had direct protective effects on the mitochondrial damages induced by ethanol in pancreas-isolated mitochondria, and these natural compounds could be developed as mitochondrial protective agents in the prevention of pancreatic β-cells and diabetogenic effect of ethanol.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crocin and gallic acid attenuate ethanol-induced mitochondrial dysfunction via suppression of ROS formation and inhibition of mitochondrial swelling in pancreatic mitochondria.\",\"authors\":\"Ahmad Salimi, Saleh Khezri, Mojtaba Amani, Niknaz Badrinezhad, Sahar Hosseiny, Reza Saadati\",\"doi\":\"10.1007/s11010-024-05180-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage. Intact mitochondria are isolated from pancreas by differential centrifugation and directly treated with toxic concentrations of ethanol (8% v/v) in the presence of different concentrations crocin/gallic acid/L-alliin (100, 500, and 1000 µM). Biomarkers of mitochondrial toxicity including the succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial swelling, lipid peroxidation, and glutathione content were assessed. The results showed that 8% v/v ethanol-treated rat pancreas-isolated mitochondria for 1 h resulted in a significant decrease of SDH activity to 81.34 ± 3.48%, a significant increase of ROS formation, MDA content, mitochondrial swelling, and collapse of MMP. Among three tested natural compounds, treatment with crocin and gallic acid significantly reversed the changes of the above indicators and resulted in the increase of SDH activity, improvement of MMP collapse and mitochondrial swelling, and reduction of ROS formation and oxidative stress in pancreas-isolated mitochondria. This study demonstrated that crocin and gallic acid had direct protective effects on the mitochondrial damages induced by ethanol in pancreas-isolated mitochondria, and these natural compounds could be developed as mitochondrial protective agents in the prevention of pancreatic β-cells and diabetogenic effect of ethanol.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05180-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05180-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
由于β细胞功能障碍,长期/大量接触乙醇与2型糖尿病的风险相关。有报道称乙醇可通过线粒体直接或间接诱导氧化应激。我们旨在探讨藏红花素/没食子酸/ l-蒜素分别作为天然抗氧化剂对乙醇诱导的线粒体损伤的保护作用。通过差速离心从胰腺中分离完整的线粒体,并在不同浓度的藏红花素/没食子酸/ l -蒜素(100、500和1000µM)存在下,直接用有毒浓度的乙醇(8% v/v)处理。评估线粒体毒性的生物标志物,包括琥珀酸脱氢酶(SDH)活性、活性氧(ROS)、线粒体膜电位(MMP)、线粒体肿胀、脂质过氧化和谷胱甘肽含量。结果表明,8% v/v乙醇处理大鼠胰腺分离线粒体1 h, SDH活性显著降低至81.34±3.48%,ROS形成、MDA含量、线粒体肿胀和MMP塌陷显著增加。在三种被测的天然化合物中,藏红花素和没食子酸处理显著逆转了上述指标的变化,导致SDH活性增加,MMP塌陷和线粒体肿胀改善,胰腺分离线粒体ROS形成和氧化应激减少。本研究表明,藏红花素和没食子酸对乙醇诱导的胰腺离体线粒体损伤具有直接保护作用,这些天然化合物可作为线粒体保护剂用于预防胰腺β细胞和乙醇致糖尿病作用。
Crocin and gallic acid attenuate ethanol-induced mitochondrial dysfunction via suppression of ROS formation and inhibition of mitochondrial swelling in pancreatic mitochondria.
Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage. Intact mitochondria are isolated from pancreas by differential centrifugation and directly treated with toxic concentrations of ethanol (8% v/v) in the presence of different concentrations crocin/gallic acid/L-alliin (100, 500, and 1000 µM). Biomarkers of mitochondrial toxicity including the succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial swelling, lipid peroxidation, and glutathione content were assessed. The results showed that 8% v/v ethanol-treated rat pancreas-isolated mitochondria for 1 h resulted in a significant decrease of SDH activity to 81.34 ± 3.48%, a significant increase of ROS formation, MDA content, mitochondrial swelling, and collapse of MMP. Among three tested natural compounds, treatment with crocin and gallic acid significantly reversed the changes of the above indicators and resulted in the increase of SDH activity, improvement of MMP collapse and mitochondrial swelling, and reduction of ROS formation and oxidative stress in pancreas-isolated mitochondria. This study demonstrated that crocin and gallic acid had direct protective effects on the mitochondrial damages induced by ethanol in pancreas-isolated mitochondria, and these natural compounds could be developed as mitochondrial protective agents in the prevention of pancreatic β-cells and diabetogenic effect of ethanol.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.