Abisha Christy Christudoss, Rita Kundu, Christian O Dimkpa, Amitava Mukherjee
{"title":"一次性口罩在垃圾填埋场渗滤液中老化对葱属植物造成细胞-基因毒性风险:医疗废物处置不受控制的危险。","authors":"Abisha Christy Christudoss, Rita Kundu, Christian O Dimkpa, Amitava Mukherjee","doi":"10.1016/j.plaphy.2024.109472","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL). After exposure to UV radiation, all three layers of the DFMs displayed surface abrasions and fractures, becoming less stable with increased UV exposure duration, indicating an aging process. Changes in the surface morphology of the DFMs and carbonyl index after UV exposure confirmed this aging process. DFM aging in LL accelerated by 11% compared to deionized (DI) water after 28 days. Different analytical techniques, including microscopy, FT-IR, Raman spectroscopy, and ICP-MS were used to detect microplastics and metals in the leachates. The microfibers collected from the leachates were primarily made of polypropylene, and the abundance of smaller microfibers (<40 μm) increased with the aging time of DFMs in leachate. Additionally, this study examines the toxicity of UV-weathered DFM leachates collected at different periods on Allium cepa, a model terrestrial plant. Leachates from DFM aged in landfill caused 15% more harm to A. cepa root cells due to increased oxidative stress (66%) compared to leachates aged in DI water. Additionally, DFM leachates aged in landfills showed a 29% increase in heavy metal content over time compared to those aged in DI water, potentially leading to significant phytotoxicity. In summary, this report highlights the impact of disposing DFMs in landfills and their biological effects on a model plant.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109472"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aging of disposable face masks in landfill leachate poses cyto-genotoxic risks to Allium cepa: Perils of uncontrolled disposal of medical waste.\",\"authors\":\"Abisha Christy Christudoss, Rita Kundu, Christian O Dimkpa, Amitava Mukherjee\",\"doi\":\"10.1016/j.plaphy.2024.109472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL). After exposure to UV radiation, all three layers of the DFMs displayed surface abrasions and fractures, becoming less stable with increased UV exposure duration, indicating an aging process. Changes in the surface morphology of the DFMs and carbonyl index after UV exposure confirmed this aging process. DFM aging in LL accelerated by 11% compared to deionized (DI) water after 28 days. Different analytical techniques, including microscopy, FT-IR, Raman spectroscopy, and ICP-MS were used to detect microplastics and metals in the leachates. The microfibers collected from the leachates were primarily made of polypropylene, and the abundance of smaller microfibers (<40 μm) increased with the aging time of DFMs in leachate. Additionally, this study examines the toxicity of UV-weathered DFM leachates collected at different periods on Allium cepa, a model terrestrial plant. Leachates from DFM aged in landfill caused 15% more harm to A. cepa root cells due to increased oxidative stress (66%) compared to leachates aged in DI water. Additionally, DFM leachates aged in landfills showed a 29% increase in heavy metal content over time compared to those aged in DI water, potentially leading to significant phytotoxicity. In summary, this report highlights the impact of disposing DFMs in landfills and their biological effects on a model plant.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109472\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109472\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109472","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Aging of disposable face masks in landfill leachate poses cyto-genotoxic risks to Allium cepa: Perils of uncontrolled disposal of medical waste.
The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL). After exposure to UV radiation, all three layers of the DFMs displayed surface abrasions and fractures, becoming less stable with increased UV exposure duration, indicating an aging process. Changes in the surface morphology of the DFMs and carbonyl index after UV exposure confirmed this aging process. DFM aging in LL accelerated by 11% compared to deionized (DI) water after 28 days. Different analytical techniques, including microscopy, FT-IR, Raman spectroscopy, and ICP-MS were used to detect microplastics and metals in the leachates. The microfibers collected from the leachates were primarily made of polypropylene, and the abundance of smaller microfibers (<40 μm) increased with the aging time of DFMs in leachate. Additionally, this study examines the toxicity of UV-weathered DFM leachates collected at different periods on Allium cepa, a model terrestrial plant. Leachates from DFM aged in landfill caused 15% more harm to A. cepa root cells due to increased oxidative stress (66%) compared to leachates aged in DI water. Additionally, DFM leachates aged in landfills showed a 29% increase in heavy metal content over time compared to those aged in DI water, potentially leading to significant phytotoxicity. In summary, this report highlights the impact of disposing DFMs in landfills and their biological effects on a model plant.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.