标签噪声滤波器集成改进糖尿病的局部诊断解释

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2025-01-02 DOI:10.1016/j.inffus.2025.102928
Che Xu, Peng Zhu, Jiacun Wang, Giancarlo Fortino
{"title":"标签噪声滤波器集成改进糖尿病的局部诊断解释","authors":"Che Xu, Peng Zhu, Jiacun Wang, Giancarlo Fortino","doi":"10.1016/j.inffus.2025.102928","DOIUrl":null,"url":null,"abstract":"In the era of big data, accurately diagnosing diabetes mellitus (DM) often requires fusing diverse types of information. Machine learning has emerged as a prevalent approach to achieve this. Despite its potential, clinical acceptance remains limited, primarily due to the lack of explainability in diagnostic predictions. The emergence of explainable artificial intelligence (XAI) offers a promising solution, yet both explainable and non-explainable models rely heavily on noise-free datasets. Label noise filters (LNFs) have been designed to enhance dataset quality by identifying and removing mislabeled samples, which can improve the predictive performance of diagnostic models. However, the impact of label noise on diagnostic explanations remains unexplored. To address this issue, this paper proposes an ensemble framework for LNFs that fuses information from different LNFs through three phases. In the first phase, a diverse pool of LNFs is generated. Second, the widely-used LIME (Local Interpretable Model-Agnostic Explanations) technique is employed to provide local explainability for diagnostic predictions made by black-box models. Finally, four ensemble strategies are designed to generate the final local diagnostic explanations for DM patients. The theoretical advantage of the ensemble is also demonstrated. The proposed framework is comprehensively evaluated on four DM datasets to assess its ability to mitigate the adverse impact of label noise on diagnostic explanations, compared to 24 baseline LNFs. Experimental results demonstrate that individual LNFs fail to consistently ensure the quality of diagnostic explanations, whereas the LNF ensemble based on local explanations provides a feasible solution to this challenge.","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the local diagnostic explanations of diabetes mellitus with the ensemble of label noise filters\",\"authors\":\"Che Xu, Peng Zhu, Jiacun Wang, Giancarlo Fortino\",\"doi\":\"10.1016/j.inffus.2025.102928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of big data, accurately diagnosing diabetes mellitus (DM) often requires fusing diverse types of information. Machine learning has emerged as a prevalent approach to achieve this. Despite its potential, clinical acceptance remains limited, primarily due to the lack of explainability in diagnostic predictions. The emergence of explainable artificial intelligence (XAI) offers a promising solution, yet both explainable and non-explainable models rely heavily on noise-free datasets. Label noise filters (LNFs) have been designed to enhance dataset quality by identifying and removing mislabeled samples, which can improve the predictive performance of diagnostic models. However, the impact of label noise on diagnostic explanations remains unexplored. To address this issue, this paper proposes an ensemble framework for LNFs that fuses information from different LNFs through three phases. In the first phase, a diverse pool of LNFs is generated. Second, the widely-used LIME (Local Interpretable Model-Agnostic Explanations) technique is employed to provide local explainability for diagnostic predictions made by black-box models. Finally, four ensemble strategies are designed to generate the final local diagnostic explanations for DM patients. The theoretical advantage of the ensemble is also demonstrated. The proposed framework is comprehensively evaluated on four DM datasets to assess its ability to mitigate the adverse impact of label noise on diagnostic explanations, compared to 24 baseline LNFs. Experimental results demonstrate that individual LNFs fail to consistently ensure the quality of diagnostic explanations, whereas the LNF ensemble based on local explanations provides a feasible solution to this challenge.\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.inffus.2025.102928\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.inffus.2025.102928","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在大数据时代,准确诊断糖尿病(DM)往往需要融合多种类型的信息。机器学习已经成为实现这一目标的普遍方法。尽管有潜力,但临床接受度仍然有限,主要是由于诊断预测缺乏可解释性。可解释人工智能(XAI)的出现提供了一个很有前途的解决方案,但可解释和不可解释的模型都严重依赖于无噪声数据集。标签噪声过滤器(lnf)被设计用来通过识别和去除错误标记的样本来提高数据集质量,这可以提高诊断模型的预测性能。然而,标签噪声对诊断解释的影响仍未被探索。为了解决这个问题,本文提出了一个集成框架,该框架通过三个阶段融合来自不同lnf的信息。在第一阶段,生成一个不同的lnf池。其次,采用广泛使用的LIME (Local Interpretable Model-Agnostic Explanations)技术,为黑箱模型做出的诊断预测提供局部可解释性。最后,设计了四种集成策略来生成DM患者的最终局部诊断解释。同时也证明了该系统的理论优势。与24个基线lnf相比,该框架在4个DM数据集上进行了全面评估,以评估其减轻标签噪声对诊断解释的不利影响的能力。实验结果表明,单个LNF不能始终如一地保证诊断解释的质量,而基于局部解释的LNF集合为这一挑战提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the local diagnostic explanations of diabetes mellitus with the ensemble of label noise filters
In the era of big data, accurately diagnosing diabetes mellitus (DM) often requires fusing diverse types of information. Machine learning has emerged as a prevalent approach to achieve this. Despite its potential, clinical acceptance remains limited, primarily due to the lack of explainability in diagnostic predictions. The emergence of explainable artificial intelligence (XAI) offers a promising solution, yet both explainable and non-explainable models rely heavily on noise-free datasets. Label noise filters (LNFs) have been designed to enhance dataset quality by identifying and removing mislabeled samples, which can improve the predictive performance of diagnostic models. However, the impact of label noise on diagnostic explanations remains unexplored. To address this issue, this paper proposes an ensemble framework for LNFs that fuses information from different LNFs through three phases. In the first phase, a diverse pool of LNFs is generated. Second, the widely-used LIME (Local Interpretable Model-Agnostic Explanations) technique is employed to provide local explainability for diagnostic predictions made by black-box models. Finally, four ensemble strategies are designed to generate the final local diagnostic explanations for DM patients. The theoretical advantage of the ensemble is also demonstrated. The proposed framework is comprehensively evaluated on four DM datasets to assess its ability to mitigate the adverse impact of label noise on diagnostic explanations, compared to 24 baseline LNFs. Experimental results demonstrate that individual LNFs fail to consistently ensure the quality of diagnostic explanations, whereas the LNF ensemble based on local explanations provides a feasible solution to this challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Optimizing the environmental design and management of public green spaces: Analyzing urban infrastructure and long-term user experience with a focus on streetlight density in the city of Las Vegas, NV DF-BSFNet: A bilateral synergistic fusion network with novel dynamic flow convolution for robust road extraction KDFuse: A high-level vision task-driven infrared and visible image fusion method based on cross-domain knowledge distillation SelfFed: Self-adaptive Federated Learning with Non-IID data on Heterogeneous Edge Devices for Bias Mitigation and Enhance Training Efficiency DEMO: A Dynamics-Enhanced Learning Model for multi-horizon trajectory prediction in autonomous vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1