变暖世界中的树木寿命:揭示温带森林生长与寿命之间的普遍权衡

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-01-06 DOI:10.1111/gcb.70023
Shuhui Liu, Roel J. W. Brienen, Chunyu Fan, Minhui Hao, Xiuhai Zhao, Chunyu Zhang
{"title":"变暖世界中的树木寿命:揭示温带森林生长与寿命之间的普遍权衡","authors":"Shuhui Liu,&nbsp;Roel J. W. Brienen,&nbsp;Chunyu Fan,&nbsp;Minhui Hao,&nbsp;Xiuhai Zhao,&nbsp;Chunyu Zhang","doi":"10.1111/gcb.70023","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO<sub>2</sub> have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink. This study aims to identify key drivers of growth and lifespan, assess the universality of tree growth-lifespan trade-offs, explore the possible latitudinal patterns of trade-off strengths and their determinants, and project growth and lifespan under future climate scenarios. We analyzed 21,193 trees of 69 species (48 included in further analysis) at 445 sites (417 included in further analysis) in temperate forests in northeastern China to estimate early growth rate and tree lifespan. We find that temperature and human pressure enhance tree growth and reduce lifespan, while altitude increases lifespan. We further find evidence for growth-lifespan trade-offs at all studied levels, that is, among trees, among species and communities, and within species and communities. Trade-offs are stronger at colder, higher latitudes compared to warmer sites, because of larger variation in tree growth and climate, larger range sizes for individual species, and lower species' diversity for communities at high latitudes. We predict future increases in growth and reductions in tree lifespan in response to climate change for the 2050s. Taking growth lifespan trade-offs into account resulted in even larger predictions of decreases in tree lifespan of up to 8%. In conclusion, growth-lifespan trade-offs are universal, but the strengths may vary by environment and between different forests. Its effects are important to include in predictions of forest responses to global change and need to be considered more widely.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree Lifespans in a Warming World: Unravelling the Universal Trade-Off Between Growth and Lifespan in Temperate Forests\",\"authors\":\"Shuhui Liu,&nbsp;Roel J. W. Brienen,&nbsp;Chunyu Fan,&nbsp;Minhui Hao,&nbsp;Xiuhai Zhao,&nbsp;Chunyu Zhang\",\"doi\":\"10.1111/gcb.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO<sub>2</sub> have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink. This study aims to identify key drivers of growth and lifespan, assess the universality of tree growth-lifespan trade-offs, explore the possible latitudinal patterns of trade-off strengths and their determinants, and project growth and lifespan under future climate scenarios. We analyzed 21,193 trees of 69 species (48 included in further analysis) at 445 sites (417 included in further analysis) in temperate forests in northeastern China to estimate early growth rate and tree lifespan. We find that temperature and human pressure enhance tree growth and reduce lifespan, while altitude increases lifespan. We further find evidence for growth-lifespan trade-offs at all studied levels, that is, among trees, among species and communities, and within species and communities. Trade-offs are stronger at colder, higher latitudes compared to warmer sites, because of larger variation in tree growth and climate, larger range sizes for individual species, and lower species' diversity for communities at high latitudes. We predict future increases in growth and reductions in tree lifespan in response to climate change for the 2050s. Taking growth lifespan trade-offs into account resulted in even larger predictions of decreases in tree lifespan of up to 8%. In conclusion, growth-lifespan trade-offs are universal, but the strengths may vary by environment and between different forests. Its effects are important to include in predictions of forest responses to global change and need to be considered more widely.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70023\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70023","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

树木的生长和寿命是森林动态的关键决定因素,并最终控制碳储量。已观察到变暖和二氧化碳增加会促进生长,但由于生长和寿命之间的权衡,这种增加可能不会导致大量的净生物量增加。更深入地了解这种权衡的本质及其潜在的空间变化对于改进对未来碳汇的预测至关重要。本研究旨在确定树木生长和寿命的关键驱动因素,评估树木生长-寿命权衡的普遍性,探索权衡优势及其决定因素的可能纬度模式,并预测未来气候情景下的树木生长和寿命。本文分析了中国东北温带森林445个站点(417个站点)69种(48种)21,193棵树的早期生长速率和树木寿命。我们发现温度和人为压力会促进树木生长并缩短寿命,而海拔则会延长寿命。我们进一步发现了生长-寿命权衡在所有研究水平上的证据,即树木之间,物种和群落之间,物种和群落内部。与温暖地区相比,在较冷的高纬度地区,权衡更强,因为树木生长和气候的变化更大,单个物种的范围更大,高纬度地区群落的物种多样性更低。我们预测,到2050年代,由于气候变化,树木的生长将会增加,而寿命将会缩短。考虑到生长寿命的权衡,树木寿命减少的预测甚至更大,高达8%。总之,生长与寿命之间的权衡是普遍存在的,但其优势可能因环境和不同森林而异。将其影响纳入森林对全球变化反应的预测是很重要的,需要更广泛地加以考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree Lifespans in a Warming World: Unravelling the Universal Trade-Off Between Growth and Lifespan in Temperate Forests

Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO2 have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink. This study aims to identify key drivers of growth and lifespan, assess the universality of tree growth-lifespan trade-offs, explore the possible latitudinal patterns of trade-off strengths and their determinants, and project growth and lifespan under future climate scenarios. We analyzed 21,193 trees of 69 species (48 included in further analysis) at 445 sites (417 included in further analysis) in temperate forests in northeastern China to estimate early growth rate and tree lifespan. We find that temperature and human pressure enhance tree growth and reduce lifespan, while altitude increases lifespan. We further find evidence for growth-lifespan trade-offs at all studied levels, that is, among trees, among species and communities, and within species and communities. Trade-offs are stronger at colder, higher latitudes compared to warmer sites, because of larger variation in tree growth and climate, larger range sizes for individual species, and lower species' diversity for communities at high latitudes. We predict future increases in growth and reductions in tree lifespan in response to climate change for the 2050s. Taking growth lifespan trade-offs into account resulted in even larger predictions of decreases in tree lifespan of up to 8%. In conclusion, growth-lifespan trade-offs are universal, but the strengths may vary by environment and between different forests. Its effects are important to include in predictions of forest responses to global change and need to be considered more widely.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming Pressure on Global Forests: Implications of Rising Vegetable Oils Consumption Under the EAT-Lancet Diet Ecological Differentiation Among Nitrous Oxide Reducers Enhances Temperature Effects on Riverine N2O Emissions Potential Spatial Mismatches Between Marine Predators and Their Prey in the Southern Hemisphere in Response to Climate Change Continent-Wide Patterns of Climate and Mast Seeding Entrain Boreal Bird Irruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1