靶向siglece -15介导子宫颈癌发展的线粒体逆行调控。

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2024-12-31 DOI:10.1016/j.tice.2024.102713
Jing Wang, Zenghui Li, Yifan He, Yongli Chu
{"title":"靶向siglece -15介导子宫颈癌发展的线粒体逆行调控。","authors":"Jing Wang, Zenghui Li, Yifan He, Yongli Chu","doi":"10.1016/j.tice.2024.102713","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer (CCA) is the predominant cause of fatalities from gynecologic malignancies, with metastasis responsible for 80 % of cancer-related mortalities. This study preliminarily examined the involvement of Sialic Acid Binding Ig Like Lectin 15 (Siglec-15) in the development of CCA and its probable mechanisms. We assessed the capacity of Siglec-15 to modulate CCA progression by establishing knockdown and overexpression Siglec-15 cell lines, supplemented with animal models, using both in vivo and in vitro dual investigations. Our findings indicate that Siglec-15 is significantly expressed in CCA cell lines and is intimately associated with the proliferation, migration, and invasion capabilities of CCA cells, as well as mitochondrial ROS homeostasis. The suppression of Siglec-15 expression markedly reduced tumor growth in mice, potentially due to Siglec-15's role in regulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, which mediates the retrograde regulation of mitochondrial ROS homeostasis. Siglec-15 may emerge as a novel therapeutic target and prognostic marker for patients with CCA.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102713"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting Siglec-15 mediates mitochondrial retrograde regulation of cervical cancer development.\",\"authors\":\"Jing Wang, Zenghui Li, Yifan He, Yongli Chu\",\"doi\":\"10.1016/j.tice.2024.102713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cervical cancer (CCA) is the predominant cause of fatalities from gynecologic malignancies, with metastasis responsible for 80 % of cancer-related mortalities. This study preliminarily examined the involvement of Sialic Acid Binding Ig Like Lectin 15 (Siglec-15) in the development of CCA and its probable mechanisms. We assessed the capacity of Siglec-15 to modulate CCA progression by establishing knockdown and overexpression Siglec-15 cell lines, supplemented with animal models, using both in vivo and in vitro dual investigations. Our findings indicate that Siglec-15 is significantly expressed in CCA cell lines and is intimately associated with the proliferation, migration, and invasion capabilities of CCA cells, as well as mitochondrial ROS homeostasis. The suppression of Siglec-15 expression markedly reduced tumor growth in mice, potentially due to Siglec-15's role in regulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, which mediates the retrograde regulation of mitochondrial ROS homeostasis. Siglec-15 may emerge as a novel therapeutic target and prognostic marker for patients with CCA.</p>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"93 \",\"pages\":\"102713\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tice.2024.102713\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2024.102713","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

宫颈癌(CCA)是妇科恶性肿瘤死亡的主要原因,其转移占癌症相关死亡率的80% %。本研究初步探讨了唾液酸结合Ig样凝集素15 (Siglec-15)在CCA发生中的作用及其可能的机制。我们通过建立低敲和过表达的siglece -15细胞系,并辅以动物模型,利用体内和体外双重研究,评估了siglece -15调节CCA进展的能力。我们的研究结果表明,siglece -15在CCA细胞系中显著表达,并与CCA细胞的增殖、迁移和侵袭能力以及线粒体ROS稳态密切相关。抑制siglece -15的表达可显著降低小鼠肿瘤生长,可能是由于siglece -15调节丝裂原活化蛋白激酶(MAPK)信号通路,该通路介导线粒体ROS稳态的逆行调节。siglece -15可能成为CCA患者新的治疗靶点和预后标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Targeting Siglec-15 mediates mitochondrial retrograde regulation of cervical cancer development.

Cervical cancer (CCA) is the predominant cause of fatalities from gynecologic malignancies, with metastasis responsible for 80 % of cancer-related mortalities. This study preliminarily examined the involvement of Sialic Acid Binding Ig Like Lectin 15 (Siglec-15) in the development of CCA and its probable mechanisms. We assessed the capacity of Siglec-15 to modulate CCA progression by establishing knockdown and overexpression Siglec-15 cell lines, supplemented with animal models, using both in vivo and in vitro dual investigations. Our findings indicate that Siglec-15 is significantly expressed in CCA cell lines and is intimately associated with the proliferation, migration, and invasion capabilities of CCA cells, as well as mitochondrial ROS homeostasis. The suppression of Siglec-15 expression markedly reduced tumor growth in mice, potentially due to Siglec-15's role in regulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, which mediates the retrograde regulation of mitochondrial ROS homeostasis. Siglec-15 may emerge as a novel therapeutic target and prognostic marker for patients with CCA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Resilience in adversity: Exploring adaptive changes in cancer cells under stress. High expression of SERPINE1 and CTSL in keratinocytes in pressure injury caused by ischemia-reperfusion injury. Impact of smoking on oral mucosa: A cytological and cellular proliferation study. Acceleration of bone healing by a growth factor-releasing allo-hybrid graft. The effects of autophagy-modifying drugs chloroquine and lithium on the skin melanoma microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1