s型光催化剂中的局部表面等离子体共振效应

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-07 DOI:10.1016/j.jmst.2024.11.056
Shan Wang, Kezhen Qi
{"title":"s型光催化剂中的局部表面等离子体共振效应","authors":"Shan Wang, Kezhen Qi","doi":"10.1016/j.jmst.2024.11.056","DOIUrl":null,"url":null,"abstract":"An emerging ZnO/CuInS<sub>2</sub> S-scheme heterojunction enables the transformation of ZnO, originally limited to ultraviolet light absorption, into a composite with a strong near-infrared response. The charge transfer from the p-type semiconductor CuInS<sub>2</sub> to the n-type semiconductor ZnO leads to an increased hole concentration in the CuInS<sub>2</sub> quantum dots at the heterojunction interface. Consequently, this enhancement not only amplifies the localized surface plasmon resonance effect but also enhances the near-infrared light absorption of CuInS<sub>2</sub> quantum dots. This strategy effectively addresses common light response challenges, advancing the overarching objective of utilizing the full solar spectrum.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"22 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized surface plasmon resonance effect in S-scheme photocatalyst\",\"authors\":\"Shan Wang, Kezhen Qi\",\"doi\":\"10.1016/j.jmst.2024.11.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An emerging ZnO/CuInS<sub>2</sub> S-scheme heterojunction enables the transformation of ZnO, originally limited to ultraviolet light absorption, into a composite with a strong near-infrared response. The charge transfer from the p-type semiconductor CuInS<sub>2</sub> to the n-type semiconductor ZnO leads to an increased hole concentration in the CuInS<sub>2</sub> quantum dots at the heterojunction interface. Consequently, this enhancement not only amplifies the localized surface plasmon resonance effect but also enhances the near-infrared light absorption of CuInS<sub>2</sub> quantum dots. This strategy effectively addresses common light response challenges, advancing the overarching objective of utilizing the full solar spectrum.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.11.056\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.056","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一个新兴的ZnO/CuInS2 S-scheme异质结使得原本仅限于紫外光吸收的ZnO转变为具有强近红外响应的复合材料。电荷从p型半导体CuInS2转移到n型半导体ZnO,导致异质结界面处CuInS2量子点的空穴浓度增加。因此,这种增强不仅放大了局部表面等离子体共振效应,而且增强了CuInS2量子点的近红外光吸收。这一策略有效地解决了常见的光响应挑战,推进了利用全太阳光谱的总体目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localized surface plasmon resonance effect in S-scheme photocatalyst
An emerging ZnO/CuInS2 S-scheme heterojunction enables the transformation of ZnO, originally limited to ultraviolet light absorption, into a composite with a strong near-infrared response. The charge transfer from the p-type semiconductor CuInS2 to the n-type semiconductor ZnO leads to an increased hole concentration in the CuInS2 quantum dots at the heterojunction interface. Consequently, this enhancement not only amplifies the localized surface plasmon resonance effect but also enhances the near-infrared light absorption of CuInS2 quantum dots. This strategy effectively addresses common light response challenges, advancing the overarching objective of utilizing the full solar spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1