低输入氧化组学促进了肠道氧化应激代谢调节因子的全球鉴定

IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Signal Transduction and Targeted Therapy Pub Date : 2025-01-08 DOI:10.1038/s41392-024-02094-7
Xina Xiao, Meng Hu, Li Gao, Huan Yuan, Baochen Chong, Yu Liu, Rou Zhang, Yanqiu Gong, Dan Du, Yong Zhang, Hao Yang, Xiaohui Liu, Yan Zhang, Huiyuan Zhang, Heng Xu, Yi Zhao, Wenbo Meng, Dan Xie, Peng Lei, Shiqian Qi, Yong Peng, Tao Tan, Yang Yu, Hongbo Hu, Biao Dong, Lunzhi Dai
{"title":"低输入氧化组学促进了肠道氧化应激代谢调节因子的全球鉴定","authors":"Xina Xiao, Meng Hu, Li Gao, Huan Yuan, Baochen Chong, Yu Liu, Rou Zhang, Yanqiu Gong, Dan Du, Yong Zhang, Hao Yang, Xiaohui Liu, Yan Zhang, Huiyuan Zhang, Heng Xu, Yi Zhao, Wenbo Meng, Dan Xie, Peng Lei, Shiqian Qi, Yong Peng, Tao Tan, Yang Yu, Hongbo Hu, Biao Dong, Lunzhi Dai","doi":"10.1038/s41392-024-02094-7","DOIUrl":null,"url":null,"abstract":"<p>Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), <i>S</i>-nitrosylation (SNO), and <i>S</i>-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys. Notably, the proteins modified by SOH and SSG were associated primarily with cell adhesion. In contrast, SNO-modified proteins were involved in immunity. Interestingly, we observed that the Sto levels ranged from 0.97% to 99.88%, exhibiting two distinct peaks and increasing with age. Crosstalk analysis revealed numerous age-related metabolites potentially involved in modulating oxidative stress and Cys modifications. Notably, we elucidated the role of fumarate in alleviating intestinal oxidative stress in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings showed that fumarate treatment promotes the recovery of several cell types, signaling pathways, and genes involved in oxidative stress regulation. Calorie restriction (CR) is a known strategy for alleviating oxidative stress. Two-month CR intervention led to the recovery of many antioxidative metabolites and reshaped the Cys redoxome. This work decodes the complexities of redoxomics during the gut aging of non-human primates and identifies key metabolic regulators of oxidative stress and redox signaling.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"22 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut\",\"authors\":\"Xina Xiao, Meng Hu, Li Gao, Huan Yuan, Baochen Chong, Yu Liu, Rou Zhang, Yanqiu Gong, Dan Du, Yong Zhang, Hao Yang, Xiaohui Liu, Yan Zhang, Huiyuan Zhang, Heng Xu, Yi Zhao, Wenbo Meng, Dan Xie, Peng Lei, Shiqian Qi, Yong Peng, Tao Tan, Yang Yu, Hongbo Hu, Biao Dong, Lunzhi Dai\",\"doi\":\"10.1038/s41392-024-02094-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), <i>S</i>-nitrosylation (SNO), and <i>S</i>-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys. Notably, the proteins modified by SOH and SSG were associated primarily with cell adhesion. In contrast, SNO-modified proteins were involved in immunity. Interestingly, we observed that the Sto levels ranged from 0.97% to 99.88%, exhibiting two distinct peaks and increasing with age. Crosstalk analysis revealed numerous age-related metabolites potentially involved in modulating oxidative stress and Cys modifications. Notably, we elucidated the role of fumarate in alleviating intestinal oxidative stress in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings showed that fumarate treatment promotes the recovery of several cell types, signaling pathways, and genes involved in oxidative stress regulation. Calorie restriction (CR) is a known strategy for alleviating oxidative stress. Two-month CR intervention led to the recovery of many antioxidative metabolites and reshaped the Cys redoxome. This work decodes the complexities of redoxomics during the gut aging of non-human primates and identifies key metabolic regulators of oxidative stress and redox signaling.</p>\",\"PeriodicalId\":21766,\"journal\":{\"name\":\"Signal Transduction and Targeted Therapy\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":40.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Transduction and Targeted Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41392-024-02094-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-024-02094-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氧化应激在器官衰老和相关疾病中起着至关重要的作用,但涉及的内源性调节因子在很大程度上仍然未知。这项工作强调了代谢稳态在防止大肠氧化应激中的重要性。通过开发一个低投入和用户友好的管道,同时分析五种不同的半胱氨酸(Cys)状态,包括游离SH,总Cys氧化(Sto),磺酸(SOH), s -亚硝基化(SNO)和谷胱甘肽化(SSG),我们揭示了Cys氧化还原修饰的化学测量和信号在猴子衰老肠道中的区域分辨率。值得注意的是,SOH和SSG修饰的蛋白主要与细胞粘附有关。相反,sno修饰的蛋白参与免疫。有趣的是,我们观察到Sto水平在0.97% ~ 99.88%之间,呈现两个明显的峰值,并随着年龄的增长而增加。串声分析揭示了许多与年龄相关的代谢物可能参与调节氧化应激和Cys修饰。值得注意的是,我们在葡聚糖硫酸钠(DSS)诱导的结肠炎小鼠模型中阐明了富马酸盐在缓解肠道氧化应激中的作用。我们的研究结果表明,富马酸处理促进了几种细胞类型、信号通路和参与氧化应激调节的基因的恢复。卡路里限制(CR)是一种众所周知的缓解氧化应激的策略。两个月的CR干预导致许多抗氧化代谢物的恢复,并重塑了Cys氧化素组。这项工作解码了非人类灵长类动物肠道衰老过程中氧化组学的复杂性,并确定了氧化应激和氧化还原信号的关键代谢调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut

Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys. Notably, the proteins modified by SOH and SSG were associated primarily with cell adhesion. In contrast, SNO-modified proteins were involved in immunity. Interestingly, we observed that the Sto levels ranged from 0.97% to 99.88%, exhibiting two distinct peaks and increasing with age. Crosstalk analysis revealed numerous age-related metabolites potentially involved in modulating oxidative stress and Cys modifications. Notably, we elucidated the role of fumarate in alleviating intestinal oxidative stress in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings showed that fumarate treatment promotes the recovery of several cell types, signaling pathways, and genes involved in oxidative stress regulation. Calorie restriction (CR) is a known strategy for alleviating oxidative stress. Two-month CR intervention led to the recovery of many antioxidative metabolites and reshaped the Cys redoxome. This work decodes the complexities of redoxomics during the gut aging of non-human primates and identifies key metabolic regulators of oxidative stress and redox signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Transduction and Targeted Therapy
Signal Transduction and Targeted Therapy Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
44.50
自引率
1.50%
发文量
384
审稿时长
5 weeks
期刊介绍: Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy. Scope: The journal covers research on major human diseases, including, but not limited to: Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.
期刊最新文献
Invasion and metastasis in cancer: molecular insights and therapeutic targets Precise targeting of transcriptional co-activators YAP/TAZ annihilates chemoresistant brCSCs by alteration of their mitochondrial homeostasis A first-in-class selective inhibitor of ERK1/2 and ERK5 overcomes drug resistance with a single-molecule strategy Population-level analyses identify host and environmental variables influencing the vaginal microbiome Breast cancer: pathogenesis and treatments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1