Xin He , Hua Wang , Jian Sun , Xixiang Zhang , Kai Chang , Fei Xue
{"title":"神经形态应用中具有相变功能材料的嵌入","authors":"Xin He , Hua Wang , Jian Sun , Xixiang Zhang , Kai Chang , Fei Xue","doi":"10.1016/j.matt.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>The introduction of foreign ions, atoms, or molecules into emerging functional materials is crucial for manipulating the physical properties of materials and innovating device applications. The intercalation of emerging new materials can induce multiple intrinsic changes, such as charge doping, chemical bonding, and lattice expansion, which facilitate the exploration of structural phase transformations, the tuning of symmetry-breaking-related physics, and the creation of brain-inspired advanced devices. Moreover, incorporating various hosts and intercalants enables a series of crystal structures with a rich spectrum of characteristics, greatly expanding the scope and fundamental understanding of existing materials. Here, we summarize typically used methods for the intercalation of functional materials. We highlight recent progress in intercalation-based phase transitions and their emerging physics (i.e., ferroelectric, magnetic, insulator-metal, superconducting, and charge-density-wave phase transitions). We discuss prospective device applications for intercalation-based phase transitions (i.e., neuromorphic devices). Finally, we provide potential future research lines for promoting further development of intercalation-based phase transitions.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 1","pages":"Article 101893"},"PeriodicalIF":17.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercalation of functional materials with phase transitions for neuromorphic applications\",\"authors\":\"Xin He , Hua Wang , Jian Sun , Xixiang Zhang , Kai Chang , Fei Xue\",\"doi\":\"10.1016/j.matt.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The introduction of foreign ions, atoms, or molecules into emerging functional materials is crucial for manipulating the physical properties of materials and innovating device applications. The intercalation of emerging new materials can induce multiple intrinsic changes, such as charge doping, chemical bonding, and lattice expansion, which facilitate the exploration of structural phase transformations, the tuning of symmetry-breaking-related physics, and the creation of brain-inspired advanced devices. Moreover, incorporating various hosts and intercalants enables a series of crystal structures with a rich spectrum of characteristics, greatly expanding the scope and fundamental understanding of existing materials. Here, we summarize typically used methods for the intercalation of functional materials. We highlight recent progress in intercalation-based phase transitions and their emerging physics (i.e., ferroelectric, magnetic, insulator-metal, superconducting, and charge-density-wave phase transitions). We discuss prospective device applications for intercalation-based phase transitions (i.e., neuromorphic devices). Finally, we provide potential future research lines for promoting further development of intercalation-based phase transitions.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"8 1\",\"pages\":\"Article 101893\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524005381\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524005381","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Intercalation of functional materials with phase transitions for neuromorphic applications
The introduction of foreign ions, atoms, or molecules into emerging functional materials is crucial for manipulating the physical properties of materials and innovating device applications. The intercalation of emerging new materials can induce multiple intrinsic changes, such as charge doping, chemical bonding, and lattice expansion, which facilitate the exploration of structural phase transformations, the tuning of symmetry-breaking-related physics, and the creation of brain-inspired advanced devices. Moreover, incorporating various hosts and intercalants enables a series of crystal structures with a rich spectrum of characteristics, greatly expanding the scope and fundamental understanding of existing materials. Here, we summarize typically used methods for the intercalation of functional materials. We highlight recent progress in intercalation-based phase transitions and their emerging physics (i.e., ferroelectric, magnetic, insulator-metal, superconducting, and charge-density-wave phase transitions). We discuss prospective device applications for intercalation-based phase transitions (i.e., neuromorphic devices). Finally, we provide potential future research lines for promoting further development of intercalation-based phase transitions.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.