TRIPOD-LLM报告指南用于使用大型语言模型的研究

IF 58.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature Medicine Pub Date : 2025-01-08 DOI:10.1038/s41591-024-03425-5
Jack Gallifant, Majid Afshar, Saleem Ameen, Yindalon Aphinyanaphongs, Shan Chen, Giovanni Cacciamani, Dina Demner-Fushman, Dmitriy Dligach, Roxana Daneshjou, Chrystinne Fernandes, Lasse Hyldig Hansen, Adam Landman, Lisa Lehmann, Liam G. McCoy, Timothy Miller, Amy Moreno, Nikolaj Munch, David Restrepo, Guergana Savova, Renato Umeton, Judy Wawira Gichoya, Gary S. Collins, Karel G. M. Moons, Leo A. Celi, Danielle S. Bitterman
{"title":"TRIPOD-LLM报告指南用于使用大型语言模型的研究","authors":"Jack Gallifant, Majid Afshar, Saleem Ameen, Yindalon Aphinyanaphongs, Shan Chen, Giovanni Cacciamani, Dina Demner-Fushman, Dmitriy Dligach, Roxana Daneshjou, Chrystinne Fernandes, Lasse Hyldig Hansen, Adam Landman, Lisa Lehmann, Liam G. McCoy, Timothy Miller, Amy Moreno, Nikolaj Munch, David Restrepo, Guergana Savova, Renato Umeton, Judy Wawira Gichoya, Gary S. Collins, Karel G. M. Moons, Leo A. Celi, Danielle S. Bitterman","doi":"10.1038/s41591-024-03425-5","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) are rapidly being adopted in healthcare, necessitating standardized reporting guidelines. We present transparent reporting of a multivariable model for individual prognosis or diagnosis (TRIPOD)-LLM, an extension of the TRIPOD + artificial intelligence statement, addressing the unique challenges of LLMs in biomedical applications. TRIPOD-LLM provides a comprehensive checklist of 19 main items and 50 subitems, covering key aspects from title to discussion. The guidelines introduce a modular format accommodating various LLM research designs and tasks, with 14 main items and 32 subitems applicable across all categories. Developed through an expedited Delphi process and expert consensus, TRIPOD-LLM emphasizes transparency, human oversight and task-specific performance reporting. We also introduce an interactive website ( https://tripod-llm.vercel.app/ ) facilitating easy guideline completion and PDF generation for submission. As a living document, TRIPOD-LLM will evolve with the field, aiming to enhance the quality, reproducibility and clinical applicability of LLM research in healthcare through comprehensive reporting. TRIPOD-LLM (transparent reporting of a multivariable model for individual prognosis or diagnosis–large language model) is a checklist of items considered essential for good reporting of studies that are developing or evaluating an LLM for use in healthcare settings. It is a ‘living guideline’ that emphasizes transparency, human oversight and task-specific performance reporting.","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"31 1","pages":"60-69"},"PeriodicalIF":58.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41591-024-03425-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The TRIPOD-LLM reporting guideline for studies using large language models\",\"authors\":\"Jack Gallifant, Majid Afshar, Saleem Ameen, Yindalon Aphinyanaphongs, Shan Chen, Giovanni Cacciamani, Dina Demner-Fushman, Dmitriy Dligach, Roxana Daneshjou, Chrystinne Fernandes, Lasse Hyldig Hansen, Adam Landman, Lisa Lehmann, Liam G. McCoy, Timothy Miller, Amy Moreno, Nikolaj Munch, David Restrepo, Guergana Savova, Renato Umeton, Judy Wawira Gichoya, Gary S. Collins, Karel G. M. Moons, Leo A. Celi, Danielle S. Bitterman\",\"doi\":\"10.1038/s41591-024-03425-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) are rapidly being adopted in healthcare, necessitating standardized reporting guidelines. We present transparent reporting of a multivariable model for individual prognosis or diagnosis (TRIPOD)-LLM, an extension of the TRIPOD + artificial intelligence statement, addressing the unique challenges of LLMs in biomedical applications. TRIPOD-LLM provides a comprehensive checklist of 19 main items and 50 subitems, covering key aspects from title to discussion. The guidelines introduce a modular format accommodating various LLM research designs and tasks, with 14 main items and 32 subitems applicable across all categories. Developed through an expedited Delphi process and expert consensus, TRIPOD-LLM emphasizes transparency, human oversight and task-specific performance reporting. We also introduce an interactive website ( https://tripod-llm.vercel.app/ ) facilitating easy guideline completion and PDF generation for submission. As a living document, TRIPOD-LLM will evolve with the field, aiming to enhance the quality, reproducibility and clinical applicability of LLM research in healthcare through comprehensive reporting. TRIPOD-LLM (transparent reporting of a multivariable model for individual prognosis or diagnosis–large language model) is a checklist of items considered essential for good reporting of studies that are developing or evaluating an LLM for use in healthcare settings. It is a ‘living guideline’ that emphasizes transparency, human oversight and task-specific performance reporting.\",\"PeriodicalId\":19037,\"journal\":{\"name\":\"Nature Medicine\",\"volume\":\"31 1\",\"pages\":\"60-69\"},\"PeriodicalIF\":58.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41591-024-03425-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41591-024-03425-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41591-024-03425-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)正在医疗保健领域迅速被采用,因此需要标准化的报告指南。我们提出了一个透明的报告,用于个体预后或诊断的多变量模型(TRIPOD)-LLM,这是TRIPOD +人工智能声明的扩展,解决了llm在生物医学应用中的独特挑战。TRIPOD-LLM提供了19个主要项目和50个子项目的综合清单,涵盖了从标题到讨论的关键方面。该指南引入了一个模块化的格式,以适应各种法学硕士的研究设计和任务,有14个主要项目和32个子项目适用于所有类别。通过快速Delphi流程和专家共识开发,TRIPOD-LLM强调透明度,人力监督和特定任务的绩效报告。我们亦推出一个互动网站(https://tripod-llm.vercel.app/),方便市民填写指引及生成PDF文件提交。作为一份活的文件,TRIPOD-LLM将随着领域的发展而发展,旨在通过全面的报告提高LLM研究在医疗保健领域的质量、可重复性和临床适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The TRIPOD-LLM reporting guideline for studies using large language models
Large language models (LLMs) are rapidly being adopted in healthcare, necessitating standardized reporting guidelines. We present transparent reporting of a multivariable model for individual prognosis or diagnosis (TRIPOD)-LLM, an extension of the TRIPOD + artificial intelligence statement, addressing the unique challenges of LLMs in biomedical applications. TRIPOD-LLM provides a comprehensive checklist of 19 main items and 50 subitems, covering key aspects from title to discussion. The guidelines introduce a modular format accommodating various LLM research designs and tasks, with 14 main items and 32 subitems applicable across all categories. Developed through an expedited Delphi process and expert consensus, TRIPOD-LLM emphasizes transparency, human oversight and task-specific performance reporting. We also introduce an interactive website ( https://tripod-llm.vercel.app/ ) facilitating easy guideline completion and PDF generation for submission. As a living document, TRIPOD-LLM will evolve with the field, aiming to enhance the quality, reproducibility and clinical applicability of LLM research in healthcare through comprehensive reporting. TRIPOD-LLM (transparent reporting of a multivariable model for individual prognosis or diagnosis–large language model) is a checklist of items considered essential for good reporting of studies that are developing or evaluating an LLM for use in healthcare settings. It is a ‘living guideline’ that emphasizes transparency, human oversight and task-specific performance reporting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Medicine
Nature Medicine 医学-生化与分子生物学
CiteScore
100.90
自引率
0.70%
发文量
525
审稿时长
1 months
期刊介绍: Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors. Nature Medicine consider all types of clinical research, including: -Case-reports and small case series -Clinical trials, whether phase 1, 2, 3 or 4 -Observational studies -Meta-analyses -Biomarker studies -Public and global health studies Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.
期刊最新文献
A roadmap for engagement and inclusion of LGBTQIA+ people in clinical research Author Correction: Burdens of type 2 diabetes and cardiovascular disease attributable to sugar-sweetened beverages in 184 countries Intermittent fasting is good for losing (some) weight Population-based, first-tier genomic newborn screening in the maternity ward The Marburg virus outbreak is a critical moment for Rwanda’s one health policy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1