双相中熵合金的温度变形行为:原位中子衍射研究

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-07 DOI:10.1016/j.jmst.2024.11.057
Gang Hee Gu, Sang Guk Jeong, Yoon-Uk Heo, Hyojeong Ha, Soung Yeoul Ahn, Ji Yeong Lee, Jungwan Lee, Stefanus Harjo, Wu Gong, Jungwook Cho, Hyoung Seop Kim
{"title":"双相中熵合金的温度变形行为:原位中子衍射研究","authors":"Gang Hee Gu, Sang Guk Jeong, Yoon-Uk Heo, Hyojeong Ha, Soung Yeoul Ahn, Ji Yeong Lee, Jungwan Lee, Stefanus Harjo, Wu Gong, Jungwook Cho, Hyoung Seop Kim","doi":"10.1016/j.jmst.2024.11.057","DOIUrl":null,"url":null,"abstract":"Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties over a broad temperature range from cryogenic temperatures (CTs) to room temperature (RT). Specifically, while the deformation mechanism is dominated solely by dislocation slip at RT, the reduction in stacking fault energy (SFE) at CTs leads to enhanced strain hardening with deformation twinning. This study employs in-situ neutron diffraction to reveal the temperature-dependent deformation behavior of the FCC/body-centered cubic (BCC) dual-phase (DP) Al<sub>7</sub>(CoNiV)<sub>93</sub> medium-entropy alloy (MEA), which possesses a matrix exhibiting deformation behavior analogous to that of representative equi-atomic MPEAs. Alongside the increased lattice friction stress associated with reduced temperature as a thermal component, deformation twinning at liquid nitrogen temperature (LNT) facilitates dislocation activity in the FCC matrix, leading to additional strain hardening induced by the dynamic Hall–Petch effect. This would give the appearance that the improved strengthening/hardening behaviors at LNT, compared to RT, are primarily attributable to the FCC phase. In contrast, the BCC precipitates are governed solely by dislocation slip for plastic deformation at both 77 K and 298 K, exhibiting a similar trend in dislocation density evolution. Nevertheless, empirical and quantitative findings indicate that the intrinsically high Peierls–Nabarro barriers in the BCC precipitates exhibit pronounced temperature-dependent lattice friction stress, suggesting that the BCC precipitates play a more significant role in the temperature-dependent strengthening/hardening behaviors for the DP-MEA. This study provides a comprehensive understanding of deformation behavior by thoroughly analyzing temperature-dependent strengthening/hardening mechanisms across various DP-MPEA systems, offering valuable guidelines for future alloy design.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"15 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent deformation behavior of dual-phase medium-entropy alloy: In-situ neutron diffraction study\",\"authors\":\"Gang Hee Gu, Sang Guk Jeong, Yoon-Uk Heo, Hyojeong Ha, Soung Yeoul Ahn, Ji Yeong Lee, Jungwan Lee, Stefanus Harjo, Wu Gong, Jungwook Cho, Hyoung Seop Kim\",\"doi\":\"10.1016/j.jmst.2024.11.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties over a broad temperature range from cryogenic temperatures (CTs) to room temperature (RT). Specifically, while the deformation mechanism is dominated solely by dislocation slip at RT, the reduction in stacking fault energy (SFE) at CTs leads to enhanced strain hardening with deformation twinning. This study employs in-situ neutron diffraction to reveal the temperature-dependent deformation behavior of the FCC/body-centered cubic (BCC) dual-phase (DP) Al<sub>7</sub>(CoNiV)<sub>93</sub> medium-entropy alloy (MEA), which possesses a matrix exhibiting deformation behavior analogous to that of representative equi-atomic MPEAs. Alongside the increased lattice friction stress associated with reduced temperature as a thermal component, deformation twinning at liquid nitrogen temperature (LNT) facilitates dislocation activity in the FCC matrix, leading to additional strain hardening induced by the dynamic Hall–Petch effect. This would give the appearance that the improved strengthening/hardening behaviors at LNT, compared to RT, are primarily attributable to the FCC phase. In contrast, the BCC precipitates are governed solely by dislocation slip for plastic deformation at both 77 K and 298 K, exhibiting a similar trend in dislocation density evolution. Nevertheless, empirical and quantitative findings indicate that the intrinsically high Peierls–Nabarro barriers in the BCC precipitates exhibit pronounced temperature-dependent lattice friction stress, suggesting that the BCC precipitates play a more significant role in the temperature-dependent strengthening/hardening behaviors for the DP-MEA. This study provides a comprehensive understanding of deformation behavior by thoroughly analyzing temperature-dependent strengthening/hardening mechanisms across various DP-MPEA systems, offering valuable guidelines for future alloy design.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.11.057\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.057","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

面心立方(FCC)等原子多主元素合金(mpea)在从低温(ct)到室温(RT)的广泛温度范围内表现出优异的力学性能。具体来说,虽然变形机制完全由位错滑移主导,但层错能(SFE)的降低导致变形孪晶的应变硬化增强。本研究利用原位中子衍射揭示了FCC/体心立方(BCC)双相(DP) Al7(CoNiV)93中熵合金(MEA)的温度依赖变形行为,该合金具有与代表性等原子mpea类似的变形行为。随着温度的降低,晶格摩擦应力增加,液氮温度下的变形孪晶(LNT)促进了FCC基体中的位错活动,导致动态Hall-Petch效应引起的额外应变硬化。这将给人的印象是,与RT相比,LNT的强化/硬化行为的改善主要归因于FCC相。相比之下,BCC相在77 K和298 K的塑性变形中仅受位错滑移的控制,其位错密度的演变趋势相似。然而,经验和定量研究结果表明,BCC沉淀中固有的高peerls - nabarro障碍表现出明显的温度依赖性晶格摩擦应力,这表明BCC沉淀在DP-MEA的温度依赖性强化/硬化行为中起着更重要的作用。本研究通过深入分析各种DP-MPEA系统的温度相关强化/硬化机制,提供了对变形行为的全面理解,为未来的合金设计提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature-dependent deformation behavior of dual-phase medium-entropy alloy: In-situ neutron diffraction study
Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties over a broad temperature range from cryogenic temperatures (CTs) to room temperature (RT). Specifically, while the deformation mechanism is dominated solely by dislocation slip at RT, the reduction in stacking fault energy (SFE) at CTs leads to enhanced strain hardening with deformation twinning. This study employs in-situ neutron diffraction to reveal the temperature-dependent deformation behavior of the FCC/body-centered cubic (BCC) dual-phase (DP) Al7(CoNiV)93 medium-entropy alloy (MEA), which possesses a matrix exhibiting deformation behavior analogous to that of representative equi-atomic MPEAs. Alongside the increased lattice friction stress associated with reduced temperature as a thermal component, deformation twinning at liquid nitrogen temperature (LNT) facilitates dislocation activity in the FCC matrix, leading to additional strain hardening induced by the dynamic Hall–Petch effect. This would give the appearance that the improved strengthening/hardening behaviors at LNT, compared to RT, are primarily attributable to the FCC phase. In contrast, the BCC precipitates are governed solely by dislocation slip for plastic deformation at both 77 K and 298 K, exhibiting a similar trend in dislocation density evolution. Nevertheless, empirical and quantitative findings indicate that the intrinsically high Peierls–Nabarro barriers in the BCC precipitates exhibit pronounced temperature-dependent lattice friction stress, suggesting that the BCC precipitates play a more significant role in the temperature-dependent strengthening/hardening behaviors for the DP-MEA. This study provides a comprehensive understanding of deformation behavior by thoroughly analyzing temperature-dependent strengthening/hardening mechanisms across various DP-MPEA systems, offering valuable guidelines for future alloy design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1