用于分离液态脂肪族化合物的富氟聚芳胺膜

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2025-01-09 DOI:10.1126/science.adp2619
Yi Ren, Hui Ma, Jinsu Kim, Mohammed Al Otmi, Ping Lin, Changhui Dai, Young Joo Lee, Zihan Zhai, Woo Jin Jang, Shijie Yang, Akriti Sarswat, Yacine Feliachi, Janani Sampath, Matthew J. Realff, Ryan P. Lively, Sheng Guo
{"title":"用于分离液态脂肪族化合物的富氟聚芳胺膜","authors":"Yi Ren, Hui Ma, Jinsu Kim, Mohammed Al Otmi, Ping Lin, Changhui Dai, Young Joo Lee, Zihan Zhai, Woo Jin Jang, Shijie Yang, Akriti Sarswat, Yacine Feliachi, Janani Sampath, Matthew J. Realff, Ryan P. Lively, Sheng Guo","doi":"10.1126/science.adp2619","DOIUrl":null,"url":null,"abstract":"We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques. These materials exhibit good separation of liquid-phase alkane isomers at ambient temperatures. The integration of these polymeric membranes into fuel and chemical feedstock separation processes was investigated in a series of experiments. Technoeconomic analyses based on these experiments indicate that the best-performing membrane materials can substantially reduce the energy costs and associated carbon emissions of hydrocarbon separations (two to 10 times, depending on product specifications).","PeriodicalId":21678,"journal":{"name":"Science","volume":"28 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorine-rich poly(arylene amine) membranes for the separation of liquid aliphatic compounds\",\"authors\":\"Yi Ren, Hui Ma, Jinsu Kim, Mohammed Al Otmi, Ping Lin, Changhui Dai, Young Joo Lee, Zihan Zhai, Woo Jin Jang, Shijie Yang, Akriti Sarswat, Yacine Feliachi, Janani Sampath, Matthew J. Realff, Ryan P. Lively, Sheng Guo\",\"doi\":\"10.1126/science.adp2619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques. These materials exhibit good separation of liquid-phase alkane isomers at ambient temperatures. The integration of these polymeric membranes into fuel and chemical feedstock separation processes was investigated in a series of experiments. Technoeconomic analyses based on these experiments indicate that the best-performing membrane materials can substantially reduce the energy costs and associated carbon emissions of hydrocarbon separations (two to 10 times, depending on product specifications).\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/science.adp2619\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adp2619","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了膜材料在分离脂肪族烃原料和产品时减少能量和碳需求的潜力。我们开发了一系列富氟聚(芳胺)聚合物膜,其特点是刚性聚合物骨架具有分离的全氟烷基侧链。这种组合使聚合物具有抗碳氢化合物浸泡引起的膨胀的能力,而不会损失基于溶液的膜制造技术。这些材料在常温下具有良好的液相烷烃异构体分离性能。在一系列实验中,研究了这些聚合物膜在燃料和化学原料分离过程中的集成。基于这些实验的技术经济分析表明,性能最好的膜材料可以大幅降低碳氢化合物分离的能源成本和相关的碳排放(根据产品规格,降低2至10倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluorine-rich poly(arylene amine) membranes for the separation of liquid aliphatic compounds
We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques. These materials exhibit good separation of liquid-phase alkane isomers at ambient temperatures. The integration of these polymeric membranes into fuel and chemical feedstock separation processes was investigated in a series of experiments. Technoeconomic analyses based on these experiments indicate that the best-performing membrane materials can substantially reduce the energy costs and associated carbon emissions of hydrocarbon separations (two to 10 times, depending on product specifications).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Rapid in silico directed evolution by a protein language model with EVOLVEpro. Affinity maturation of antibody responses is mediated by differential plasma cell proliferation. A path to US Tribal energy sovereignty. AAAS 2025 Annual Meeting Program. A bite of expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1