{"title":"脑机接口中双手运动协调的系统综述","authors":"Poraneepan Tantawanich;Chatrin Phunruangsakao;Shin-Ichi Izumi;Mitsuhiro Hayashibe","doi":"10.1109/TNSRE.2024.3522168","DOIUrl":null,"url":null,"abstract":"Advancements in neuroscience and artificial intelligence are propelling rapid progress in brain-computer interfaces (BCIs). These developments hold significant potential for decoding motion intentions from brain signals, enabling direct control commands without reliance on conventional neural pathways. Growing interest exists in decoding bimanual motor tasks, crucial for activities of daily living. This stems from the need to restore motor function, especially in individuals with deficits. This review aims to summarize neurological advancements in bimanual BCIs, encompassing neuroimaging techniques, experimental paradigms, and analysis algorithms. Thirty-six articles were reviewed, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search result revealed diverse experimental paradigms, protocols, and research directions, including enhancing the decoding accuracy, advancing versatile prosthesis robots, and enabling real-time applications. Notably, within BCI studies on bimanual movement coordination, a shared objective is to achieve naturalistic movement and practical applications with neurorehabilitation potential.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"266-285"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816155","citationCount":"0","resultStr":"{\"title\":\"A Systematic Review of Bimanual Motor Coordination in Brain-Computer Interface\",\"authors\":\"Poraneepan Tantawanich;Chatrin Phunruangsakao;Shin-Ichi Izumi;Mitsuhiro Hayashibe\",\"doi\":\"10.1109/TNSRE.2024.3522168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in neuroscience and artificial intelligence are propelling rapid progress in brain-computer interfaces (BCIs). These developments hold significant potential for decoding motion intentions from brain signals, enabling direct control commands without reliance on conventional neural pathways. Growing interest exists in decoding bimanual motor tasks, crucial for activities of daily living. This stems from the need to restore motor function, especially in individuals with deficits. This review aims to summarize neurological advancements in bimanual BCIs, encompassing neuroimaging techniques, experimental paradigms, and analysis algorithms. Thirty-six articles were reviewed, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search result revealed diverse experimental paradigms, protocols, and research directions, including enhancing the decoding accuracy, advancing versatile prosthesis robots, and enabling real-time applications. Notably, within BCI studies on bimanual movement coordination, a shared objective is to achieve naturalistic movement and practical applications with neurorehabilitation potential.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"266-285\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816155/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816155/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Systematic Review of Bimanual Motor Coordination in Brain-Computer Interface
Advancements in neuroscience and artificial intelligence are propelling rapid progress in brain-computer interfaces (BCIs). These developments hold significant potential for decoding motion intentions from brain signals, enabling direct control commands without reliance on conventional neural pathways. Growing interest exists in decoding bimanual motor tasks, crucial for activities of daily living. This stems from the need to restore motor function, especially in individuals with deficits. This review aims to summarize neurological advancements in bimanual BCIs, encompassing neuroimaging techniques, experimental paradigms, and analysis algorithms. Thirty-six articles were reviewed, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search result revealed diverse experimental paradigms, protocols, and research directions, including enhancing the decoding accuracy, advancing versatile prosthesis robots, and enabling real-time applications. Notably, within BCI studies on bimanual movement coordination, a shared objective is to achieve naturalistic movement and practical applications with neurorehabilitation potential.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.