特征选择增强成人ADHD的fNIRS分类

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Neural Systems and Rehabilitation Engineering Pub Date : 2024-12-24 DOI:10.1109/TNSRE.2024.3522121
Minyeong Hong;Suh-Yeon Dong;Roger S. McIntyre;Soon-Kiat Chiang;Roger Ho
{"title":"特征选择增强成人ADHD的fNIRS分类","authors":"Minyeong Hong;Suh-Yeon Dong;Roger S. McIntyre;Soon-Kiat Chiang;Roger Ho","doi":"10.1109/TNSRE.2024.3522121","DOIUrl":null,"url":null,"abstract":"Adult attention deficit hyperactivity disorder (ADHD), a prevalent psychiatric disorder, significantly impacts social, academic, and occupational functioning. However, it has been relatively less prioritized compared to childhood ADHD. This study employed a functional near-infrared spectroscopy (fNIRS) during verbal fluency tasks in conjunction with machine learning (ML) techniques to differentiate between healthy controls (N =75) and ADHD individuals (N =120). Efficient feature selection in high-dimensional fNIRS datasets is crucial for improving accuracy. To address this, we propose a hybrid feature selection method that combines a wrapper-based and embedded approach, termed Bayesian-Tuned Ridge RFECV (BTR-RFECV). The proposed method facilitated streamlined feature selection and hyperparameter tuning in high-dimensional data, thereby reducing the number of features while enhancing accuracy. HbO features from the combined frontal and temporal regions were key, with the models achieving precision (89.89%), recall (89.74%), F-1 score (89.66%), accuracy (89.74%), MCC (78.36%), and GDR (88.45%). The outcomes of this study highlight the promising potential of combining fNIRS with ML as diagnostic tools in clinical settings, offering a pathway to significantly reduce manual intervention.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"220-231"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813598","citationCount":"0","resultStr":"{\"title\":\"fNIRS Classification of Adults With ADHD Enhanced by Feature Selection\",\"authors\":\"Minyeong Hong;Suh-Yeon Dong;Roger S. McIntyre;Soon-Kiat Chiang;Roger Ho\",\"doi\":\"10.1109/TNSRE.2024.3522121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adult attention deficit hyperactivity disorder (ADHD), a prevalent psychiatric disorder, significantly impacts social, academic, and occupational functioning. However, it has been relatively less prioritized compared to childhood ADHD. This study employed a functional near-infrared spectroscopy (fNIRS) during verbal fluency tasks in conjunction with machine learning (ML) techniques to differentiate between healthy controls (N =75) and ADHD individuals (N =120). Efficient feature selection in high-dimensional fNIRS datasets is crucial for improving accuracy. To address this, we propose a hybrid feature selection method that combines a wrapper-based and embedded approach, termed Bayesian-Tuned Ridge RFECV (BTR-RFECV). The proposed method facilitated streamlined feature selection and hyperparameter tuning in high-dimensional data, thereby reducing the number of features while enhancing accuracy. HbO features from the combined frontal and temporal regions were key, with the models achieving precision (89.89%), recall (89.74%), F-1 score (89.66%), accuracy (89.74%), MCC (78.36%), and GDR (88.45%). The outcomes of this study highlight the promising potential of combining fNIRS with ML as diagnostic tools in clinical settings, offering a pathway to significantly reduce manual intervention.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"220-231\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813598\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10813598/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10813598/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

成人注意缺陷多动障碍(ADHD)是一种普遍存在的精神疾病,严重影响社会、学业和职业功能。然而,与儿童多动症相比,它的优先级相对较低。本研究采用功能性近红外光谱(fNIRS)结合机器学习(ML)技术在语言流畅性任务中区分健康对照组(N =75)和ADHD个体(N =120)。在高维近红外光谱数据集中,有效的特征选择是提高精度的关键。为了解决这个问题,我们提出了一种混合特征选择方法,该方法结合了基于包装器和嵌入式方法,称为贝叶斯调谐脊RFECV (BTR-RFECV)。该方法简化了高维数据的特征选择和超参数调整,从而在减少特征数量的同时提高了精度。来自额叶和颞叶的HbO特征是关键,模型达到了准确率(89.89%)、召回率(89.74%)、F-1评分(89.66%)、准确率(89.74%)、MCC(78.36%)和GDR(88.45%)。这项研究的结果强调了将fNIRS与ML结合作为临床诊断工具的潜力,为显著减少人工干预提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
fNIRS Classification of Adults With ADHD Enhanced by Feature Selection
Adult attention deficit hyperactivity disorder (ADHD), a prevalent psychiatric disorder, significantly impacts social, academic, and occupational functioning. However, it has been relatively less prioritized compared to childhood ADHD. This study employed a functional near-infrared spectroscopy (fNIRS) during verbal fluency tasks in conjunction with machine learning (ML) techniques to differentiate between healthy controls (N =75) and ADHD individuals (N =120). Efficient feature selection in high-dimensional fNIRS datasets is crucial for improving accuracy. To address this, we propose a hybrid feature selection method that combines a wrapper-based and embedded approach, termed Bayesian-Tuned Ridge RFECV (BTR-RFECV). The proposed method facilitated streamlined feature selection and hyperparameter tuning in high-dimensional data, thereby reducing the number of features while enhancing accuracy. HbO features from the combined frontal and temporal regions were key, with the models achieving precision (89.89%), recall (89.74%), F-1 score (89.66%), accuracy (89.74%), MCC (78.36%), and GDR (88.45%). The outcomes of this study highlight the promising potential of combining fNIRS with ML as diagnostic tools in clinical settings, offering a pathway to significantly reduce manual intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
期刊最新文献
Enhancing Manual Wheelchair Propulsion: Incremental Assistance Levels of Pushrim-Activated Power-Assist Proportionally Reduce Physiological and Biomechanical Demands in Able-Bodied Participants. Improving Acceptance to Sensory Substitution: A study on the V2A-SS Learning Model based on Information Processing Learning Theory. The More, the Better? Evaluating the Role of EEG Preprocessing for Deep Learning Applications Locomotion Joint Angle and Moment Estimation With Soft Wearable Sensors for Personalized Exosuit Control LAST-PAIN: Learning Adaptive Spike Thresholds for Low Back Pain Biosignals Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1