风电机组功率预测的机器学习方法

Q2 Energy Energy Informatics Pub Date : 2025-01-06 DOI:10.1186/s42162-024-00459-4
Hariom Dhungana
{"title":"风电机组功率预测的机器学习方法","authors":"Hariom Dhungana","doi":"10.1186/s42162-024-00459-4","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating power forecasting with wind turbine maintenance planning enables an innovative, data-driven approach that maximizes energy output by predicting periods low wind production and aligning them with maintenance schedules, improving operational efficiency. Recently, many countries have met renewable energy targets, primarily using wind and solar, to promote sustainable growth and reduce emissions. Forecasting wind turbine power production is crucial for maintaining a stable and reliable power grid. As renewable energy integration increases, precise electricity demand forecasting becomes essential at every power system level. This study presents and compares nine machine learning (ML) methods for forecasting, Interpretable ML, Explainable ML, and Blackbox model. The interpretable ML includes Linear Regression (LR), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Random Forest (RF); the explainable ML consists of graphical Neural network (GNN); and the blackbox model includes Multi-layer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). These methods are applied to the EDP datasets using three causal variable types: including temporal information, metrological information, and power curtailment information. Computational results show that the GNN-based forecasting model outperforms other benchmark methods regarding power forecasting accuracy. However, when considering computational resources such as memory and processing time, the XGBoost model provides optimal results, offering faster processing and reduced memory usage. Furthermore, we present forecasting results for various time windows and horizons, ranging from 10 minutes to a day.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00459-4","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach for wind turbine power forecasting for maintenance planning\",\"authors\":\"Hariom Dhungana\",\"doi\":\"10.1186/s42162-024-00459-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integrating power forecasting with wind turbine maintenance planning enables an innovative, data-driven approach that maximizes energy output by predicting periods low wind production and aligning them with maintenance schedules, improving operational efficiency. Recently, many countries have met renewable energy targets, primarily using wind and solar, to promote sustainable growth and reduce emissions. Forecasting wind turbine power production is crucial for maintaining a stable and reliable power grid. As renewable energy integration increases, precise electricity demand forecasting becomes essential at every power system level. This study presents and compares nine machine learning (ML) methods for forecasting, Interpretable ML, Explainable ML, and Blackbox model. The interpretable ML includes Linear Regression (LR), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Random Forest (RF); the explainable ML consists of graphical Neural network (GNN); and the blackbox model includes Multi-layer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). These methods are applied to the EDP datasets using three causal variable types: including temporal information, metrological information, and power curtailment information. Computational results show that the GNN-based forecasting model outperforms other benchmark methods regarding power forecasting accuracy. However, when considering computational resources such as memory and processing time, the XGBoost model provides optimal results, offering faster processing and reduced memory usage. Furthermore, we present forecasting results for various time windows and horizons, ranging from 10 minutes to a day.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00459-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00459-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00459-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

将功率预测与风力涡轮机维护计划相结合,实现了一种创新的、数据驱动的方法,通过预测低风力发电量,并将其与维护计划相结合,最大限度地提高了能源输出,提高了运行效率。最近,许多国家实现了可再生能源目标,主要是利用风能和太阳能,以促进可持续增长和减少排放。预测风力发电对于维持电网的稳定和可靠至关重要。随着可再生能源整合的增加,精确的电力需求预测在每个电力系统层面都变得至关重要。本研究提出并比较了预测、可解释ML、可解释ML和黑盒模型的九种机器学习(ML)方法。可解释的机器学习包括线性回归(LR)、k近邻(KNN)、极限梯度增强(XGBoost)、随机森林(RF);可解释机器学习由图形神经网络(GNN)组成;黑箱模型包括多层感知器(MLP)、递归神经网络(RNN)、门控递归单元(GRU)和长短期记忆(LSTM)。这些方法应用于EDP数据集,使用三种因果变量类型:包括时间信息、计量信息和限电信息。计算结果表明,基于gnn的预测模型在功率预测精度方面优于其他基准方法。但是,在考虑内存和处理时间等计算资源时,XGBoost模型提供了最佳结果,提供了更快的处理速度和更少的内存使用。此外,我们提供了不同时间窗口和视界的预测结果,范围从10分钟到一天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning approach for wind turbine power forecasting for maintenance planning

Integrating power forecasting with wind turbine maintenance planning enables an innovative, data-driven approach that maximizes energy output by predicting periods low wind production and aligning them with maintenance schedules, improving operational efficiency. Recently, many countries have met renewable energy targets, primarily using wind and solar, to promote sustainable growth and reduce emissions. Forecasting wind turbine power production is crucial for maintaining a stable and reliable power grid. As renewable energy integration increases, precise electricity demand forecasting becomes essential at every power system level. This study presents and compares nine machine learning (ML) methods for forecasting, Interpretable ML, Explainable ML, and Blackbox model. The interpretable ML includes Linear Regression (LR), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Random Forest (RF); the explainable ML consists of graphical Neural network (GNN); and the blackbox model includes Multi-layer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). These methods are applied to the EDP datasets using three causal variable types: including temporal information, metrological information, and power curtailment information. Computational results show that the GNN-based forecasting model outperforms other benchmark methods regarding power forecasting accuracy. However, when considering computational resources such as memory and processing time, the XGBoost model provides optimal results, offering faster processing and reduced memory usage. Furthermore, we present forecasting results for various time windows and horizons, ranging from 10 minutes to a day.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1